Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 107(6): 1464-1476, 2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36130223

RESUMO

Uterine endometrial differentiation is essential for developmental continuity and female health. A convenient in vitro model mimicking the physiological status is needed to effectively evaluate implantation and uterine response mechanisms. Thus, we developed a promising in vitro model, the FSS (FSH mimic-stimulated synchronized) model, by using primary mouse uterine stromal cells (mUSCs) obtained from equine chorionic gonadotropin (eCG)-primed mice. These mUSCs could be differentiated into decidualized cells with 17 beta-estradiol (E2) and progesterone (P4). The pregnancy day 4 (PD4) model, in which mUSCs are obtained at day 4 of pregnancy, was used as a control. The cell shape index and polyploidy rates were similar between the two models. The staining intensities of lipids and glycogen were significantly higher in the induced groups in both models but stronger in the FSS model than in the PD4 model. The expression levels of AP-TNAP, cathepsin L, Prl8a2, Gja1, Cebpb, and Igfbp1 were increased at 24 h after decidual induction. PR-alpha and PR-beta levels were also increased at 24 h after decidual induction in both models. These results indicate that the FSS model provides a convenient method for obtaining USCs that are usable for various experimental approaches due to their physiological competence and flexibility for triggering induction. This may serve as a model system for the study of pathogeneses originating from the endometrium or communication with other tissues and lead to a better understanding of embryo implantation mechanisms. Furthermore, the results of this study will be integral for further refinements of 3D uterine culture manipulation techniques.


Assuntos
Implantação do Embrião , Células Estromais , Gravidez , Feminino , Animais , Cavalos , Camundongos , Células Estromais/metabolismo , Implantação do Embrião/fisiologia , Endométrio , Progesterona/farmacologia , Útero , Gonadotropinas Equinas/farmacologia , Decídua/metabolismo
2.
Dev Reprod ; 25(4): 257-268, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35141451

RESUMO

Phthalates and their metabolites are well-known endocrine disrupting chemicals. Di-(2-ethylhexyl) phthalate (DEHP) has been widely used in industry and the exposing possibility to adult is high. In this study, DEHP was treated (133 µg/L and 1,330 µg/L in drinking water) according to the OECD test guideline 443 to mature female mice and their adrenal gland were examined for histological characteristics and steroidogenic gene expression. The wet weight of the adrenal gland was increased in all administrated groups compared to control. The diameter of zona fasciculata (ZF) was increased by DEHP in both outer ZF and inner ZF but there was no difference in morphology of the cells and arrangements into zona between groups. In addition, the arrangement of extracellular matrix was not different between control and DEHP groups. CYP11B1 was mainly localized at ZF and the intensity was not different between groups. DAX1 was localized in zona glomerulosa (ZG) and ZF, and its expression levels were decreased by DEHP administration. Its level was lower in DEHP133 group than DEHP1330 group. On the other hand, CYP17A1 was localized in ZG of DEHP1330 group. These results suggest that chronic low-dose DEHP exposing may modify the microstructure and function of the adrenal cortical cortex.

3.
Opt Express ; 24(5): 5411-5422, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092364

RESUMO

In this study, an online refocusing algorithm is proposed for a satellite camera performing an Earth observation mission. Satellite cameras are vulnerable to misalignment in orbit because of their severe launching environments and the thermal vacuum environment in space. The proposed online refocusing algorithm is able to guarantee high quality images by aligning the satellite camera in real time. This alignment is achieved by precisely adjusting the movement mechanism of the secondary mirror (M2) and the focal plane. The target optical system used in this study was originally designed for the purposes of algorithm development. The system uses a Schmidt-Cassegrain-type satellite camera with a 200-mm diameter primary mirror (M1). The ground sampling distance (GSD) is 3.8 m from an altitude of 700 km. A fourth-order equation model is derived for the modulation transfer function (MTF) variation tendency for M2 de-spacing. Following this, the proposed online refocusing algorithm for the target optical system is developed. The algorithm is able to assess the de-space position from the MTF measurements using stellar sources. It is determined from the simulation that any misaligned satellite camera can be refocused within a ± 0.5µm M2 de-space error by applying the proposed refocusing algorithm in real time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA