Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Pharm Res ; 47(4): 341-359, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38592583

RESUMO

The relationship between schizophrenia (SCZ) and cancer development remains controversial. Based on the disease-gene association platform, it has been revealed that tumor necrosis factor receptor (TNFR) could be an important mediatory factor in both cancer and SCZ development. TNF-α also increases the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) in the development of SCZ and tumor, but the role of TNFR in mediating the association between the two diseases remains unclear. We studied the vital roles of TNFR2 in the progression of tumor and SCZ-like behavior using A549 lung cancer cell xenografted TNFR2 knockout mice. TNFR2 knockout mice showed significantly decreased tumor size and weight as well as schizophrenia-like behaviors compared to wild-type mice. Consistent with the reduced tumor growth and SCZ-like behaviors, the levels of TrkB and BDNF expression were significantly decreased in the lung tumor tissues and pre-frontal cortex of TNFR2 knockout mice. However, intravenous injection of BDNF (160 µg/kg) to TNFR2 knockout mice for 4 weeks increased tumor growth and SCZ-like behaviors as well as TrkB expression. In in vitro study, significantly decreased cell growth and expression of TrkB and BDNF by siTNFR2 transfection were found in A549 lung cancer cells. However, the addition of BDNF (100 ng/ml) into TNFR2 siRNA transfected A549 lung cancer cells recovered cell growth and the expression of TrkB. These results suggest that TNFR2 could be an important factor in mediating the comorbidity between lung tumor growth and SCZ development through increased TrkB-dependent BDNF levels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neoplasias Pulmonares , Camundongos Knockout , Receptor trkB , Receptores Tipo II do Fator de Necrose Tumoral , Esquizofrenia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Humanos , Camundongos , Esquizofrenia/metabolismo , Esquizofrenia/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Receptor trkB/metabolismo , Receptor trkB/genética , Células A549 , Masculino , Comportamento Animal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
2.
Int J Mol Sci ; 20(11)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174394

RESUMO

Osteoporosis is an abnormal bone remodeling condition characterized by decreased bone density, which leads to high risks of fracture. Previous study has demonstrated that Lycii Radicis Cortex (LRC) extract inhibits bone loss in ovariectomized (OVX) mice by enhancing osteoblast differentiation. A bioactive compound, kukoamine B (KB), was identified from fractionation of an LRC extract as a candidate component responsible for an anti-osteoporotic effect. This study investigated the anti-osteoporotic effects of KB using in vitro and in vivo osteoporosis models. KB treatment significantly increased the osteoblastic differentiation and mineralized nodule formation of osteoblastic MC3T3-E1 cells, while it significantly decreased the osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. The effects of KB on osteoblastic and osteoclastic differentiations under more physiological conditions were also examined. In the co-culture of MC3T3-E1 cells and monocytes, KB promoted osteoblast differentiation but did not affect osteoclast differentiation. In vivo experiments revealed that KB significantly inhibited OVX-induced bone mineral density loss and restored the impaired bone structural properties in osteoporosis model mice. These results suggest that KB may be a potential therapeutic candidate for the treatment of osteoporosis.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Ácidos Cafeicos/uso terapêutico , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Espermina/análogos & derivados , Animais , Conservadores da Densidade Óssea/farmacologia , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Ácidos Cafeicos/farmacologia , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Medicamentos de Ervas Chinesas/química , Feminino , Camundongos , Osteoblastos/citologia , Osteoclastos/citologia , Osteoporose/etiologia , Ovariectomia/efeitos adversos , Espermina/farmacologia , Espermina/uso terapêutico
3.
Pharmacol Ther ; 163: 1-23, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27130805

RESUMO

Peroxiredoxins (PRDXs) are antioxidant enzymes, known to catalyze peroxide reduction to balance cellular hydrogen peroxide (H2O2) levels, which are essential for cell signaling and metabolism and act as a regulator of redox signaling. Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Early studies demonstrated that PRDXs regulates cell growth, metabolism and immune regulation and therefore involved in the pathologic regulator or protectant of several cancers, neurodegenerative diseases and inflammatory diseases. Oxidative stress and antioxidant systems are important regulators of redox signaling regulated diseases. In addition, thiol-based redox systems through peroxiredoxins have been demonstrated to regulate several redox-dependent process related diseases. In this review article, we will discuss recent findings regarding PRDXs in the development of diseases and further discuss therapeutic approaches targeting PRDXs. Moreover, we will suggest that PRDXs could be targets of several diseases and the therapeutic agents for targeting PRDXs may have potential beneficial effects for the treatment of cancers, neurodegenerative diseases and inflammatory diseases. Future research should open new avenues for the design of novel therapeutic approaches targeting PRDXs.


Assuntos
Inflamação/fisiopatologia , Neoplasias/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Peroxirredoxinas/metabolismo , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Carcinógenos/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Peroxirredoxinas/química , Transdução de Sinais , Transcrição Gênica/fisiologia
4.
PLoS One ; 9(3): e91508, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24618722

RESUMO

Thiacremonone (2, 4-dihydroxy-2, 5-dimethyl-thiophene-3-one) is an antioxidant substance as a novel sulfur compound generated from High-Temperature-High-Pressure-treated garlic. Peroxiredoxin 6 (PRDX6) is a member of peroxidases, and has glutathione peroxidase and calcium-independent phospholipase A2 (iPLA2) activities. Several studies have demonstrated that PRDX6 stimulates lung cancer cell growth via an increase of glutathione peroxidase activity. A docking model study and pull down assay showed that thiacremonone completely fits on the active site (cys-47) of glutathione peroxidase of PRDX6 and interacts with PRDX6. Thus, we investigated whether thiacremonone inhibits cell growth by blocking glutathione peroxidase of PRDX6 in the human lung cancer cells, A549 and NCI-H460. Thiacremonone (0-50 µg/ml) inhibited lung cancer cell growth in a concentration dependent manner through induction of apoptotic cell death accompanied by induction of cleaved caspase-3, -8, -9, Bax, p21 and p53, but decrease of xIAP, cIAP and Bcl2 expression. Thiacremonone further inhibited glutathione peroxidase activity in lung cancer cells. However, the cell growth inhibitory effect of thiacremonone was not observed in the lung cancer cells transfected with mutant PRDX6 (C47S) and in the presence of dithiothreitol and glutathione. In an allograft in vivo model, thiacremonone (30 mg/kg) also inhibited tumor growth accompanied with the reduction of PRDX6 expression and glutathione peroxidase activity, but increased expression of cleaved caspase-3, -8, -9, Bax, p21 and p53. These data indicate that thiacremonone inhibits tumor growth via inhibition of glutathione peroxidase activity of PRDX6 through interaction. These data suggest that thiacremonone may have potentially beneficial effects in lung cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Peroxirredoxina VI/genética , Tiofenos/farmacologia , Aloenxertos , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Alho/química , Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , Mutação , Neoplasias/tratamento farmacológico , Peroxirredoxina VI/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ligação Proteica , Tiofenos/química , Tiofenos/metabolismo , Carga Tumoral/efeitos dos fármacos
5.
Free Radic Biol Med ; 69: 367-76, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24512906

RESUMO

PRDX6 is a bifunctional protein with both glutathione peroxidase (GPx) and calcium-independent phospholipase A2 (iPLA2) activities, which are concomitantly increased with the expression of PRDX6. PRDX6 promoted lung tumor growth in an in vivo allograft model. Herein, we further studied the vital roles in tumor progression of PRDX6 in lung cancer using nude mice bearing PRDX6-overexpressing lung cancer cells. Nude mice xenografted with PRDX6 showed increases in tumor size and weight compared to control mice. Histopathological and Western blotting examination demonstrated that expression of proliferating cell nuclear antigen, vascular endothelial growth factor, metalloproteinases 2 and 9, and cyclin-dependent kinases accompanied by increased iPLA2 and GPx activities were increased in the tumor tissues of PRDX6-overexpressing nude mice. In tumor tissues of PRDX6-overexpressing mice, the activation of mitogen-activated protein kinases and AP-1 DNA binding were also increased. The growth of lung cancer cell lines (A549 and NCI-H460) was enhanced by the increase in iPLA2 and GPx activities of PRDX6. In addition, mutant PRDX6 (C47S) attenuated PRDX6-mediated p38, ERK1/2, and AP-1 activities as well as its enzyme activities in the A549 and NCI-H460 lines. Furthermore, tumor growth and p38, ERK1/2, and AP-1 activities were also inhibited in nude mice bearing mutant PRDX6 (C47S) compared to PRDX6. Therefore, our findings indicate that PRDX6 promotes lung tumor growth via increased glutathione peroxidase and iPLA2 activities.


Assuntos
Glutationa Peroxidase/genética , Fosfolipases A2 do Grupo VI/genética , Neoplasias Pulmonares/genética , Peroxirredoxina VI/genética , Animais , Carcinogênese , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glutationa Peroxidase/metabolismo , Fosfolipases A2 do Grupo VI/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peroxirredoxina VI/metabolismo , Fator de Transcrição AP-1 , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Free Radic Biol Med ; 61: 453-63, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23643677

RESUMO

This study compared lung tumor growth in PRDX6-overexpressing transgenic (Tg) mice and normal mice. These mice expressed elevated levels of PRDX6 mRNA and protein in multiple tissues. In vivo, Tg mice displayed a greater increase in the growth of lung tumor compared with normal mice. Glutathione peroxidase and calcium-independent phospholipase 2 (iPLA2) activities in tumor tissues of Tg mice were much higher than in tumor tissues of normal mice. Higher tumor growth in PRDX6-overexpressing Tg mice was associated with an increase in activating protein-1 (AP-1) DNA-binding activity. Moreover, expression of proliferating cell nuclear antigen, Ki67, vascular endothelial growth factor, c-Jun, c-Fos, metalloproteinase-9, cyclin-dependent kinases, and cyclins was much higher in the tumor tissues of PRDX6-overexpressing Tg mice than in tumor tissues of normal mice. However, the expression of apoptotic regulatory proteins including caspase-3 and Bax was slightly less in the tumor tissues of normal mice. In tumor tissues of PRDX6-overexpressing Tg mice, activation of mitogen-activated protein kinases (MAPKs) was much higher than in normal mice. In cultured lung cancer cells, PRDX6 siRNA suppressed glutathione peroxidase and iPLA2 activities and cancer cell growth, but the enforced overexpression of PRDX6 increased cancer cell growth associated with their increased activities. In vitro, among the tested MAPK inhibitors, c-Jun NH2-terminal kinase (JNK) inhibitor clearly suppressed the growth of lung cancer cells and AP-1 DNA binding, glutathione peroxidase activity, and iPLA2 activity in normal and PRDX6-overexpressing lung cancer cells. These data indicate that overexpression of PRDX6 promotes lung tumor growth via increased glutathione peroxidase and iPLA2 activities through the upregulation of the AP-1 and JNK pathways.


Assuntos
Neoplasias Pulmonares/patologia , Peroxirredoxina VI/fisiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , DNA/metabolismo , Glutationa Peroxidase/análise , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peroxirredoxina VI/análise , Fosfolipases A2/metabolismo , Fator de Transcrição AP-1/metabolismo
7.
Apoptosis ; 17(12): 1316-26, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23007278

RESUMO

We investigated whether snake venom toxin (SVT) from Vipera lebetina turanica enhances the apoptosis ability of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in cancer cells. TRAIL inhibited HCT116 cell growth in a dose-dependent manner; however, this reduction did not occur in TRAIL resistant HT-29, A549 and HepG2 cells with an even higher dose of TRAIL. SVT, but not TRAIL enhanced expression of cell death receptor (DR) in TRAIL resistant cancer cells in a dose-dependent manner. A combination of SVT with TRAIL significantly inhibited cell growth of TRAIL resistant HT-29, A549 and HepG2 cells. Consistent with cell growth inhibition, the expression of TRAIL receptors; DR4 and DR5 was significantly increased as well as apoptosis related proteins such as cleaved caspase-3, -8, -9 and Bax. However, the expression of survival proteins (e.g., cFLIP, survivin, XIAP and Bcl2) was suppressed by the combination treatment of SVT and TRAIL. Depletion of DR4 or DR5 by small interfering RNA significantly reversed the cell growth inhibitory and apoptosis blocking effects of SVT in HCT116 and HT-29 cells. Pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the reactive oxygen species (ROS) scavenger N-acetylcysteine reduced the SVT and TRAIL-induced upregulation of DR4 and DR5 expression, expression of the apoptosis related protein such as caspase-3 and-9, as well as cell growth inhibitory effects. The collective results suggest that SVT facilitates TRAIL-induced apoptosis in cancer cells through up-regulation of the TRAIL receptors; DR4 and DR5 via ROS/JNK pathway signals.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Morte Celular/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Venenos de Víboras/toxicidade , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Receptores de Morte Celular/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Regulação para Cima/efeitos dos fármacos , Venenos de Víboras/química , Viperidae
8.
BMC Cancer ; 12: 228, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22681760

RESUMO

BACKGROUND: Abundant research suggested that the cancer cells avoid destruction by the immune system through down-regulation or mutation of death receptors. Therefore, it is very important that finding the agents that increase the death receptors of cancer cells. In this study, we demonstrated that the snake venom toxin from Vipera lebetina turanica induce the apoptosis of colon cancer cells through reactive oxygen species (ROS) and c-Jun N-terminal kinases (JNK) dependent death receptor (DR4 and DR5) expression. METHODS: We used cell viability assays, DAPI/TUNEL assays, as well as western blot for detection of apoptosis related proteins and DRs to demonstrate that snake venom toxin-induced apoptosis is DR4 and DR5 dependent. We carried out transient siRNA knockdowns of DR4 and DR5 in colon cancer cells. RESULTS: We showed that snake venom toxin inhibited growth of colon cancer cells through induction of apoptosis. We also showed that the expression of DR4 and DR5 was increased by treatment of snake venom toxin. Moreover, knockdown of DR4 or DR5 reversed the effect of snake venom toxin. Snake venom toxin also induced JNK phosphorylation and ROS generation, however, pretreatment of JNK inhibitor and ROS scavenger reversed the inhibitory effect of snake venom toxin on cancer cell proliferation, and reduced the snake venom toxin-induced upregulation of DR4 and DR5 expression. CONCLUSIONS: Our results indicated that snake venom toxin could inhibit human colon cancer cell growth, and these effects may be related to ROS and JNK mediated activation of death receptor (DR4 and DR5) signals.


Assuntos
Antineoplásicos/farmacologia , Apoptose/fisiologia , Neoplasias do Colo/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Venenos de Víboras/farmacologia , Análise de Variância , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Western Blotting , Caspases/administração & dosagem , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio , Regulação para Cima
9.
Toxicol Appl Pharmacol ; 258(1): 72-81, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22027265

RESUMO

We investigated whether bee venom and melittin, a major component of bee venom, inhibit cell growth through enhancement of death receptor expressions in the human ovarian cancer cells, SKOV3 and PA-1. Bee venom (1-5 µg/ml) and melittin (0.5-2 µg/ml) inhibited the growth of SKOV3 and PA-1 ovarian cancer cells by the induction of apoptotic cell death in a dose dependent manner. Consistent with apoptotic cell death, expression of death receptor (DR) 3 and DR6 was increased in both cancer cells, but expression of DR4 was increased only in PA-1 cells. Expression of DR downstream pro-apoptotic proteins including caspase-3, 8, and Bax was concomitantly increased, but the phosphorylation of JAK2 and STAT3 and the expression of Bcl-2 were inhibited by treatment with bee venom and melittin in SKOV3 and PA-1 cells. Expression of cleaved caspase-3 was increased in SKOV3, but cleaved caspase-8 was increased in PA-1 cells. Moreover, deletion of DR3, DR4, and DR6 by small interfering RNA significantly reversed bee venom and melittin-induced cell growth inhibitory effect as well as down regulation of STAT3 by bee venom and melittin in SKOV3 and PA-1 ovarian cancer cell. These results suggest that bee venom and melittin induce apoptotic cell death in ovarian cancer cells through enhancement of DR3, DR4, and DR6 expression and inhibition of STAT3 pathway.


Assuntos
Antineoplásicos/farmacologia , Venenos de Abelha/farmacologia , Janus Quinase 2/antagonistas & inibidores , Meliteno/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Receptores de Morte Celular/fisiologia , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Feminino , Humanos , Janus Quinase 2/fisiologia , Neoplasias Ovarianas/patologia , Fator de Transcrição STAT3/fisiologia
10.
J Nutr Biochem ; 23(7): 706-15, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21820300

RESUMO

Biphenolic components in the Magnolia family have shown several pharmacological activities such as antitumor effects. This study investigated the effects of 4-O-methylhonokiol (MH), a constituent of Magnolia officinalis, on human colon cancer cell growth and its action mechanism. 4-O-methylhonokiol (0-30 µM) decreased constitutive activated nuclear factor (NF)-κB DNA binding activity and inhibited growth of human colon (SW620 and HCT116) cancer cells. It also caused G0-G1 phase cell cycle arrest followed by an induction of apoptotic cell death. However, knockdown with small interfering RNA (siRNA) of p21 or transfection with cyclin D1/Cdk4 binding site-mutated p21 abrogated MH-induced cell growth inhibition, inhibition of NF-κB activity as well as expression of cyclin D1 and Cdk4. Conversely, inhibition of NF-κB with specific inhibitor or siRNA augmented MH-induced apoptotic cell death. 4-O-methylhonokiol inhibited tumor growth, NF-κB activity and expression of antiapoptotic proteins; however, it increased the expression of apoptotic proteins as well as p21 in xenograft nude mice bearing SW620 cancer cells. The present study reveals that MH causes p21-mediated human colon cancer cell growth inhibition through suppression of NF-κB and indicates that this compound by itself or in combination with other anticancer agents could be useful for the treatment of cancer.


Assuntos
Compostos de Bifenilo/farmacologia , Neoplasias do Colo/tratamento farmacológico , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Lignanas/farmacologia , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Colo/citologia , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias do Colo/patologia , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Magnolia/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/genética , RNA Interferente Pequeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA