Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(29): 11845-11852, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38976499

RESUMO

Integration of optical components into microfluidic devices can enhance particle manipulations, separations, and analyses. We present a method to fabricate microscale diffractive lenses composed of aperiodically spaced concentric rings milled into a thin metal film to precisely position optical tweezers within microfluidic channels. Integrated thin-film microlenses perform the laser focusing required to generate sufficient optical forces to trap particles without significant off-device beam manipulation. Moreover, the ability to trap particles with unfocused laser light allows multiple optical traps to be powered simultaneously by a single input laser. We have optically trapped polystyrene particles with diameters of 0.5, 1, 2, and 4 µm over microlenses fabricated in chromium and gold films. Optical forces generated by these microlenses captured particles traveling at fluid velocities up to 64 µm/s. Quantitative trapping experiments with particles in microfluidic flow demonstrate size-based differential trapping of neutrally buoyant particles where larger particles required a stronger trapping force. The optical forces on these particles are identical to traditional optical traps, but the addition of a continuous viscous drag force from the microfluidic flow introduces tunable size selectivity across a range of laser powers and fluid velocities.

2.
ACS Nano ; 17(1): 505-514, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36546561

RESUMO

The photothermally induced nanoscale dynamics of rapid melting and resolidification of a thin layer of molecular material surrounding a nanoparticle is examined in real time by an all-optical approach. The method employs pulsed periodic modulation of the medium's dielectric constant through absorption of a low-duty-cycle laser pulse train by a single nanoparticle that acts as a localized heating source. Interpretation of experimental data, including inference of a phase change and of the liquid/solid interface dynamics, is obtained by comparing experimental data with results from coupled optical-thermal numerical simulations. The combined experimental/computational workflow presented in this proof-of-principle study will enable future explorations of material parameters at nanoscale, which are often different from their bulk values and in many cases difficult to infer from macroscopic measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA