Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 237: 115489, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37402347

RESUMO

Polymerase chain reaction (PCR) in small fluidic systems not only improves speed and sensitivity of deoxyribonucleic acid (DNA) amplification but also achieves high-throughput quantitative analyses. However, air bubble trapping and growth during PCR has been considered as a critical problem since it causes the failure of DNA amplification. Here we report bubble-free diatom PCR by exploiting a hierarchically porous silica structure of single-celled algae. We show that femtoliters of PCR solution can be spontaneously loaded into the diatom interior without air bubble trapping due to the surface hydrophilicity and pore structure of the diatom. We discover that a large pressure gradient between air bubbles and nanopores rapidly removes residual air bubbles through the periodically arrayed nanopores during thermal cycling. We demonstrate the DNA amplification by diatom PCR without air bubble trapping and growth. Finally, we successfully detect DNA fragments of SARS-CoV-2 with as low as 10 copies/µl by devising a microfluidic device integrated with diatoms assembly. We believe that our work can be applied to many PCR applications for innovative molecular diagnostics and provides new opportunities for naturally abundant diatoms to create innovative biomaterials in real-world applications.


Assuntos
Técnicas Biossensoriais , COVID-19 , Diatomáceas , Humanos , Diatomáceas/genética , Diatomáceas/química , SARS-CoV-2/genética , Reação em Cadeia da Polimerase , DNA/genética , Teste para COVID-19
2.
Nano Lett ; 22(19): 7927-7935, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36137175

RESUMO

Electron transfer through the mitochondrial electron transport chain (ETC) can be critically blocked by the dysfunction of protein complexes. Redox-active molecules have been used to mediate the electron transfer in place of the dysfunctional complexes; however, they are limited to replacing complex I and are known to be toxic. Here we report artificial mitochondrial electron transfer pathways that enhance ETC activity by exploiting inner-membrane-bound gold nanoparticles (GNPs) as efficient electron transfer mediators. The hybridization of mitochondria with GNPs, driven by electrostatic interaction, is successfully visualized in real time at the level of a single mitochondrion. By observing quantized quenching dips via plasmon resonance energy transfer, we reveal that the hybridized GNPs are bound to the inner membrane of mitochondria irrespective of the presence of the outer membrane. The ETC activity of mitochondria with GNPs such as membrane potential, oxygen consumption, and ATP production is remarkably increased in vitro.


Assuntos
Ouro , Nanopartículas Metálicas , Trifosfato de Adenosina , Transporte de Elétrons , Elétrons
3.
Nano Lett ; 21(14): 6194-6201, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254801

RESUMO

Plasmonic nanocavities between metal nanoparticles on metal films are either hydrophobic or fully occupied by nonmetallic spacers, preventing molecular diffusion into electromagnetic hotspots. Here we realize water-wettable open plasmonic cavities by devising gold nanoparticle with site-selectively grown ultrathin dielectric layer-on-gold film structures. We directly confirm that hydrophilic dielectric layers of SiO2 or TiO2, which are formed only at the tips of gold nanorod via precise temperature control, render sub-10 nm cavities open to the surroundings and completely water-wettable. Simulations reveal that spontaneous wetting in our cavities is driven by the presence of tip-selective hydrophilic layer and tendency of minimizing high energy air/water interface inside the cavities. Our plasmonic cavities show significant Raman enhancement of up to 4 orders of magnitude higher than those of conventional ones for molecules in various media. Our findings will offer new opportunities for sensing applications of plasmonic nanocavities and have huge impacts on cavity plasmonics.


Assuntos
Ouro , Nanopartículas Metálicas , Interações Hidrofóbicas e Hidrofílicas , Dióxido de Silício , Água
4.
Anal Chem ; 93(28): 9927-9932, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34236175

RESUMO

Dynamics of release and cellular uptake of aqueous CO from CO-releasing molecules (CORMs) significantly affect signaling and cell viability. So far, it has been mainly observed by IR, UV-visible, and fluorescence techniques, which suffer from poor sensitivity and slow response time. Here, we show how to directly probe the mass transfer of aqueous CO from CORMs to cells using a fluidic chamber integrated with live cells and Raman reporters of large-area Au@Pd core-shell nanoparticle assembly to emulate a physiologically relevant microenvironment. We sensitively and directly detect CO release from trace CORMs of as low as 100 nM by measuring the Raman transitions of CO via rapid chemisorption onto the surface of the Au@Pd nanoparticles. By using our method, we successfully observe the dynamics of CO release from CORM-2 despite its very short half-life. We also reveal that the initial rate of CO release from CORM-3 is dramatically decreased by tens to hundreds of times when exposed to physiologically relevant pH variations from 7.4 to 2.5, which can be attributed to the acid hydrolysis of the CO ligand. CORM-2 tends to quickly release CO regardless of pH, probably because of its rapid cleavage into two monomeric Ru complexes by the co-solvent. The decrease in the initial rate at lower temperatures is more significant for CORM-3 than for CORM-2. Finally, we observe that the cellular uptake of aqueous CO from CORM-3 by lung cancer cells is approximately 2 times higher than that of normal lung cells.


Assuntos
Monóxido de Carbono , Compostos Organometálicos , Transporte Biológico , Sobrevivência Celular , Humanos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA