Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546914

RESUMO

Visceral leishmaniasis, caused by Leishmania donovani, is a life-threatening parasitic disease, but current antileishmanial drugs are limited and have severe drawbacks. There have been efforts to repurpose antifungal azole drugs for the treatment of Leishmania infection. Antifungal azoles are known to potently inhibit the activity of cytochrome P450 (CYP) 51 enzymes which are responsible for removing the C14α-methyl group of lanosterol, a key step in ergosterol biosynthesis in Leishmania. However, they exhibit varying degrees of antileishmanial activities in culture, suggesting the existence of unrecognized molecular targets for these compounds. Our previous study reveals that, in Leishmania, lanosterol undergoes parallel C4- and C14-demethylation reactions to form 4α,14α-dimethylzymosterol and T-MAS, respectively. In the current study, CYP5122A1 is identified as a sterol C4-methyl oxidase that catalyzes the sequential oxidation of lanosterol to form C4-oxidation metabolites. CYP5122A1 is essential for both L. donovani promastigotes in culture and intracellular amastigotes in infected mice. Overexpression of CYP5122A1 results in growth delay, differentiation defects, increased tolerance to stress, and altered expression of lipophosphoglycan and proteophosphoglycan. CYP5122A1 also helps to determine the antileishmanial effect of antifungal azoles in vitro. Dual inhibitors of CYP51 and CYP5122A1, e.g., clotrimazole and posaconazole, possess superior antileishmanial activity against L. donovani promastigotes whereas CYP51-selective inhibitors, e.g., fluconazole and voriconazole, have little effect on promastigote growth. Our findings uncover the critical biochemical and biological role of CYP5122A1 in L. donovani and provide an important foundation for developing new antileishmanial drugs by targeting both CYP enzymes.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35994895

RESUMO

Human leishmaniasis is an infectious disease caused by Leishmania protozoan parasites. Current chemotherapeutic options against the deadly disease have significant limitations. The ergosterol biosynthetic pathway has been identified as a drug target in Leishmania. However, remarkable differences in the efficacy of antifungal azoles that inhibit ergosterol biosynthesis have been reported for the treatment of leishmaniasis. To better understand the sterol biosynthetic pathway in Leishmania and elucidate the mechanism underlying the differential efficacy of antifungal azoles, we developed a new LC-MS/MS method to study sterol profiles in promastigotes of three Leishmania species, including two L. donovani, one L. major and one L. tarentolae strains. A combination of distinct precursor ion masses and LC retention times allowed for specific detection of sixteen intermediate sterols between lanosterol and ergosterol using the newly developed LC-MS/MS method. Although both posaconazole and fluconazole are known inhibitors of fungal lanosterol 14α-demethylase (CYP51), only posaconazole led to a substantial accumulation of lanosterol in azole-treated L. donovani promastigotes. Furthermore, a key intermediate sterol accumulated by 40- and 7-fold when these parasites were treated with posaconazole and fluconazole, respectively, which was determined as 4α,14α-dimethylzymosterol by high resolution mass spectrometry and NMR spectroscopy. The identification of 4α,14α-dimethylzymosterol supports a branched ergosterol biosynthetic pathway in Leishmania, where lanosterol C4- and C14-demethylation reactions occur in parallel rather than sequentially. Our results suggest that selective inhibition of leishmanial CYP51 is insufficient to effectively prevent parasite growth and dual inhibitors of both CYP51 and the unknown sterol C4-demethylase may be required for optimal antiparasitic effect.


Assuntos
Leishmania , Parasitos , Animais , Humanos , Azóis/farmacologia , Ergosterol/farmacologia , Esteróis/análise , Esteróis/farmacologia , Esterol 14-Desmetilase , Vias Biossintéticas , Espectrometria de Massas em Tandem , Parasitos/metabolismo , Cromatografia Líquida , Antifúngicos/farmacologia , Antifúngicos/química , Lanosterol/análise , Lanosterol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA