Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Urban Clim ; 33: 100623, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32292692

RESUMO

Integrated Urban hydrometeorological, climate and environmental Services (IUS) is a World Meteorological Organization (WMO) initiative to aid development of science-based services to support safe, healthy, resilient and climate friendly cities. Guidance for Integrated Urban Hydrometeorological, Climate and Environmental Services (Volume I) has been developed with the intent to provide an overview of the concept, methods and good practices for producing and providing these services to respond to urban hazards across a range of time scales (weather to climate). This involves combining (dense) heterogeneous observation networks, high-resolution forecasts, multi-hazard early warning systems and climate services to assist cities in setting and implementing mitigation and adaptation strategies for the management and building of resilient and sustainable cities. IUS includes research, evaluation and delivery with a wide participation from city governments, national hydrometeorological services, international organizations, universities, research institutions and private sector stakeholders. An overview of the IUS concept with key messages, examples of good practice and recommendations are provided. The research community will play an important role to: identify critical research challenges; develop impact forecasts and warnings; promote and deliver IUS internationally, and; support national and local communities in the implementation of IUS thereby contributing to the United Nations' Sustainable Development Goals at all scales.

2.
Bull Am Meteorol Soc ; 98(1): 69-78, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30008481

RESUMO

The measurement of global precipitation, both rainfall and snowfall, is critical to a wide range of users and applications. Rain gauges are indispensable in the measurement of precipitation, remaining the de facto standard for precipitation information across the Earth's surface for hydro-meteorological purposes. However, their distribution across the globe is limited: over land their distribution and density is variable, while over oceans very few gauges exist and where measurements are made, they may not adequately reflect the rainfall amounts of the broader area. Critically, the number of gauges available, or appropriate for a particular study, varies greatly across the Earth due to temporal sampling resolutions, periods of operation, data latency and data access. Numbers of gauges range from a few thousand available in near real time, to about a hundred thousand for all 'official' gauges, and to possibly hundreds of thousands if all possible gauges are included. Gauges routinely used in the generation of global precipitation products cover an equivalent area of between about 250 m2 and 3,000 m2. For comparison, the center circle of a soccer pitch or tennis court is about 260 m2. Although each gauge should represent more than just the gauge orifice, auto-correlation distances of precipitation vary greatly with regime and the integration period. Assuming each Global Precipitation Climatology Centre (GPCC) -available gauge is independent and represents a surrounding area of 5 km radius, this represents only about 1% of the Earth's surface. The situation is further confounded for snowfall which has a greater measurement uncertainty.

3.
Amospheric-Ocean ; 33(1): 249-302, 1995. ilus, tab
Artigo em En | Desastres | ID: des-8092

RESUMO

Summer severe weather (SSW) can strike suddlenly and unexpectedly with disastrous consequences for human activity. Considerable progress has been made in the past ten years in the operational forescating of SSW. Traditionally, SSW was defined to consist of tornadoes, strong winds, hail, lightning and heavy rain. Hazardous types of strong winds have recently been expanded to include microbursts, macrobursts and surfacing rear inflow jet damage behind mesoscale convective systems...(AU)


Assuntos
Prognóstico , Tempo (Meteorologia) , Radar , Estações de Monitoramento , Métodos , Mudança Climática , Tempestades Ciclônicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA