Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 119(Pt 12): 2592-603, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16735439

RESUMO

Signal-mediated translocation of transient receptor potential (TRP) channels is a novel mechanism to fine tune a variety of signaling pathways including neuronal path finding and Drosophila photoreception. In Drosophila phototransduction the cation channels TRP and TRP-like (TRPL) are the targets of a prototypical G protein-coupled signaling pathway. We have recently found that the TRPL channel translocates between the rhabdomere and the cell body in a light-dependent manner. This translocation modifies the ion channel composition of the signaling membrane and induces long-term adaptation. However, the molecular mechanism underlying TRPL translocation remains unclear. Here we report that eGFP-tagged TRPL expressed in the photoreceptor cells formed functional ion channels with properties of the native channels, whereas TRPL-eGFP translocation could be directly visualized in intact eyes. TRPL-eGFP failed to translocate to the cell body in flies carrying severe mutations in essential phototransduction proteins, including rhodopsin, Galphaq, phospholipase Cbeta and the TRP ion channel, or in proteins required for TRP function. Our data, furthermore, show that the activation of a small fraction of rhodopsin and of residual amounts of the Gq protein is sufficient to trigger TRPL-eGFP internalization. In addition, we found that endocytosis of TRPL-eGFP occurs independently of dynamin, whereas a mutation of the unconventional myosin III, NINAC, hinders complete translocation of TRPL-eGFP to the cell body. Altogether, this study revealed that activation of the phototransduction cascade is mandatory for TRPL internalization, suggesting a critical role for the light induced conductance increase and the ensuing Ca2+ -influx in the translocation process. The critical role of Ca2+ influx was directly demonstrated when the light-induced TRPL-eGFP translocation was blocked by removing extracellular Ca2+.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Luz , Células Fotorreceptoras de Invertebrados/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Visão Ocular/fisiologia , Animais , Arrestinas/biossíntese , Arrestinas/fisiologia , Cálcio/metabolismo , Cálcio/efeitos da radiação , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/efeitos da radiação , Drosophila melanogaster/efeitos da radiação , Proteínas de Fluorescência Verde/antagonistas & inibidores , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/efeitos da radiação , Células Fotorreceptoras de Invertebrados/efeitos da radiação , Transporte Proteico/fisiologia , Transporte Proteico/efeitos da radiação , Rodopsina/fisiologia , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/efeitos da radiação , Visão Ocular/efeitos da radiação
2.
J Cell Biol ; 171(1): 143-52, 2005 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-16216927

RESUMO

Recent studies in Drosophila melanogaster retina indicate that absorption of light causes the translocation of signaling molecules and actin from the photoreceptor's signaling membrane to the cytosol, but the underlying mechanisms are not fully understood. As ezrin-radixin-moesin (ERM) proteins are known to regulate actin-membrane interactions in a signal-dependent manner, we analyzed the role of Dmoesin, the unique D. melanogaster ERM, in response to light. We report that the illumination of dark-raised flies triggers the dissociation of Dmoesin from the light-sensitive transient receptor potential (TRP) and TRP-like channels, followed by the migration of Dmoesin from the membrane to the cytoplasm. Furthermore, we show that light-activated migration of Dmoesin results from the dephosphorylation of a conserved threonine in Dmoesin. The expression of a Dmoesin mutant form that impairs this phosphorylation inhibits Dmoesin movement and leads to light-induced retinal degeneration. Thus, our data strongly suggest that the light- and phosphorylation-dependent dynamic association of Dmoesin to membrane channels is involved in maintenance of the photoreceptor cells.


Assuntos
Proteínas de Drosophila/metabolismo , Luz , Proteínas de Membrana/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Membrana Celular/química , Citosol/química , Proteínas de Membrana/genética , Modelos Moleculares , Mutação , Fosforilação , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/efeitos da radiação , Transporte Proteico/efeitos da radiação
3.
EMBO J ; 22(3): 459-68, 2003 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-12554647

RESUMO

Heterotrimeric G-proteins relay signals between membrane-bound receptors and downstream effectors. Little is known, however, about the regulation of Galpha subunit localization within the natural endogenous environment of a specialized signaling cell. Here we show, using live Drosophila flies, that light causes massive and reversible translocation of the visual Gqalpha to the cytosol, associated with marked architectural changes in the signaling compartment. Molecular genetic dissection together with detailed kinetic analysis enabled us to characterize the translocation cycle and to unravel how signaling molecules that interact with Gqalpha affect these processes. Epistatic analysis showed that Gqalpha is necessary but not sufficient to bring about the morphological changes in the signaling organelle. Furthermore, mutant analysis indicated that Gqbeta is essential for targeting of Gqalpha to the membrane and suggested that Gqbeta is also needed for efficient activation of Gqalpha by rhodopsin. Our results support the 'two-signal model' hypothesis for membrane targeting in a living organism and characterize the regulation of both the activity-dependent Gq localization and the cellular architectural changes in Drosophila photoreceptors.


Assuntos
Drosophila melanogaster/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Luz , Células Fotorreceptoras de Invertebrados/ultraestrutura , Subunidades Proteicas/metabolismo , Transporte Proteico/fisiologia , Actinas/metabolismo , Animais , Citoplasma/química , Citoplasma/metabolismo , Adaptação à Escuridão , Drosophila melanogaster/ultraestrutura , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Organismos Geneticamente Modificados , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Rodopsina/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA