Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746279

RESUMO

The intuitive manipulation of specific amino acids to alter the activity or specificity of CRISPR-Cas9 has been a topic of great interest. As a large multi-domain RNA-guided endonuclease, the intricate molecular crosstalk within the Cas9 protein hinges on its conformational dynamics, but a comprehensive understanding of the extent and timescale of the motions that drive its allosteric function and association with nucleic acids remains elusive. Here, we investigated the structure and multi-timescale molecular motions of the recognition (Rec) lobe of GeoCas9, a thermophilic Cas9 from Geobacillus stearothermophilus. Our results provide new atomic details about the GeoRec subdomains (GeoRec1, GeoRec2) and the full-length domain in solution. Two single-point mutants, K267E and R332A, enhanced and redistributed micro-millisecond flexibility throughout GeoRec, and NMR studies of the interaction between GeoRec and its guide RNA showed that mutations reduced this affinity and the stability of the ribonucleoprotein complex. Despite measured biophysical differences due to the mutations, DNA cleavage assays reveal only modest functional differences in on-target activity, and similar specificity. These data highlight how guide RNA interactions can be tuned in the absence of major functional losses, but also raise questions about the underlying mechanism of GeoCas9, since analogous single-point mutations have significantly impacted on- and off-target DNA editing in mesophilic S. pyogenes Cas9. A K267E/R332A double mutant did modestly enhance GeoCas9 specificity, highlighting the robust evolutionary tolerance of Cas9 and species-dependent complexity. Ultimately, this work provides an avenue by which to modulate the structure, motion, and nucleic acid interactions at the level of the Rec lobe of GeoCas9, setting the stage for future studies of GeoCas9 variants and their effect on its allosteric mechanism.

2.
Nat Commun ; 15(1): 3883, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719805

RESUMO

The long interspersed nuclear element-1 (LINE-1 or L1) retrotransposon is the only active autonomously replicating retrotransposon in the human genome. L1 harms the cell by inserting new copies, generating DNA damage, and triggering inflammation. Therefore, L1 inhibition could be used to treat many diseases associated with these processes. Previous research has focused on inhibition of the L1 reverse transcriptase due to the prevalence of well-characterized inhibitors of related viral enzymes. Here we present the L1 endonuclease as another target for reducing L1 activity. We characterize structurally diverse small molecule endonuclease inhibitors using computational, biochemical, and biophysical methods. We also show that these inhibitors reduce L1 retrotransposition, L1-induced DNA damage, and inflammation reinforced by L1 in senescent cells. These inhibitors could be used for further pharmacological development and as tools to better understand the life cycle of this element and its impact on disease processes.


Assuntos
Endonucleases , Elementos Nucleotídeos Longos e Dispersos , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Endonucleases/metabolismo , Endonucleases/genética , Endonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Dano ao DNA , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Senescência Celular/efeitos dos fármacos , Desoxirribonuclease I
3.
Sci Adv ; 10(10): eadl1045, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446895

RESUMO

The high-fidelity (HF1), hyper-accurate (Hypa), and evolved (Evo) variants of the CRISPR-associated protein 9 (Cas9) endonuclease are critical tools to mitigate off-target effects in the application of CRISPR-Cas9 technology. The mechanisms by which mutations in recognition subdomain 3 (Rec3) mediate specificity in these variants are poorly understood. Here, solution nuclear magnetic resonance and molecular dynamics simulations establish the structural and dynamic effects of high-specificity mutations in Rec3, and how they propagate the allosteric signal of Cas9. We reveal conserved structural changes and dynamic differences at regions of Rec3 that interface with the RNA:DNA hybrid, transducing chemical signals from Rec3 to the catalytic His-Asn-His (HNH) domain. The variants remodel the communication sourcing from the Rec3 α helix 37, previously shown to sense target DNA complementarity, either directly or allosterically. This mechanism increases communication between the DNA mismatch recognition helix and the HNH active site, shedding light on the structure and dynamics underlying Cas9 specificity and providing insight for future engineering principles.


Assuntos
Sistemas CRISPR-Cas , Comunicação , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR , Catálise , DNA/genética
4.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37662375

RESUMO

The Cas9-HF1, HypaCas9, and evoCas9 variants of the Cas9 endonuclease are critical tools to mitigate off-target effects in the application of CRISPR-Cas9 technology. The mechanisms by which mutations in the Rec3 domain mediate specificity in these variants are poorly understood. Here, solution NMR and molecular dynamics simulations establish the structural and dynamic effects of high-specificity mutations in Rec3, and how they propagate the allosteric signal of Cas9. We reveal conserved structural changes and peculiar dynamic differences at regions of Rec3 that interface with the RNA:DNA hybrid, transducing chemical signals from Rec3 to the catalytic HNH domain. The variants remodel the communication sourcing from the Rec3 α-helix 37, previously shown to sense target DNA complementarity, either directly or allosterically. This mechanism increases communication between the DNA mismatch recognition helix and the HNH active site, shedding light on the structure and dynamics underlying Cas9 specificity and providing insight for future engineering principles.

5.
J Biol Chem ; 299(9): 105100, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507019

RESUMO

In eukaryotic cells, the introns are excised from pre-mRNA by the spliceosome. These introns typically have a lariat configuration due to the 2'-5' phosphodiester bond between an internal branched residue and the 5' terminus of the RNA. The only enzyme known to selectively hydrolyze the 2'-5' linkage of these lariats is the RNA lariat debranching enzyme Dbr1. In humans, Dbr1 is involved in processes such as class-switch recombination of immunoglobulin genes, and its dysfunction is implicated in viral encephalitis, HIV, ALS, and cancer. However, mechanistic details of precisely how Dbr1 affects these processes are missing. Here we show that human Dbr1 contains a disordered C-terminal domain through sequence analysis and nuclear magnetic resonance. This domain stabilizes Dbr1 in vitro by reducing aggregation but is dispensable for debranching activity. We establish that Dbr1 requires Fe2+ for efficient catalysis and demonstrate that the noncatalytic protein Drn1 and the uncharacterized protein trichothiodystrophy nonphotosensitive 1 directly bind to Dbr1. We demonstrate addition of trichothiodystrophy nonphotosensitive 1 to in vitro debranching reactions increases the catalytic efficiency of human Dbr1 19-fold but has no effect on the activity of Dbr1 from the amoeba Entamoeba histolytica, which lacks a disordered C-terminal domain. Finally, we systematically examine how the identity of the branchpoint nucleotide affects debranching rates. These findings describe new aspects of Dbr1 function in humans and further clarify how Dbr1 contributes to human health and disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , RNA Nucleotidiltransferases , Humanos , Íntrons , RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/metabolismo , Splicing de RNA , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ativação Enzimática/genética , Domínios Proteicos , Ligação Proteica , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Entamoeba histolytica/enzimologia , Entamoeba histolytica/genética , Metais Pesados/metabolismo
6.
J Chem Phys ; 157(22): 225103, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36546784

RESUMO

Allosteric signaling within multidomain proteins is a driver of communication between spatially distant functional sites. Understanding the mechanism of allosteric coupling in large multidomain proteins is the most promising route to achieving spatial and temporal control of the system. The recent explosion of CRISPR-Cas9 applications in molecular biology and medicine has created a need to understand how the atomic level protein dynamics of Cas9, which are the driving force of its allosteric crosstalk, influence its biophysical characteristics. In this study, we used a synergistic approach of nuclear magnetic resonance (NMR) and computation to pinpoint an allosteric hotspot in the HNH domain of the thermostable GeoCas9. We show that mutation of K597 to alanine disrupts a salt-bridge network, which in turn alters the structure, the timescale of allosteric motions, and the thermostability of the GeoHNH domain. This homologous lysine-to-alanine mutation in the extensively studied mesophilic S. pyogenes Cas9 similarly alters the dynamics of the SpHNH domain. We have previously demonstrated that the alteration of allostery via mutations is a source for the specificity enhancement of SpCas9 (eSpCas9). Hence, this may also be true in GeoCas9.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/metabolismo , Clivagem do DNA , Eletricidade Estática , Temperatura
7.
J Struct Biol ; 214(1): 107814, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34871741

RESUMO

CRISPR-Cas9 is a widely used biochemical tool with applications in molecular biology and precision medicine. The RNA-guided Cas9 protein uses its HNH endonuclease domain to cleave the DNA strand complementary to its endogenous guide RNA. In this study, novel constructs of HNH from two divergent organisms, G. stearothermophilus (GeoHNH) and S. pyogenes (SpHNH) were engineered from their respective full-length Cas9 proteins. Despite low sequence similarity, the X-ray crystal structures of these constructs reveal that the core of HNH surrounding the active site is conserved. Structure prediction of the full-length GeoCas9 protein using Phyre2 and AlphaFold2 also showed that the crystallographic construct of GeoHNH represents the structure of the domain within the full-length GeoCas9 protein. However, significant differences are observed in the solution dynamics of structurally conserved regions of GeoHNH and SpHNH, the latter of which was shown to use such molecular motions to propagate the DNA cleavage signal. Indeed, molecular simulations show that the intradomain signaling pathways, which drive SpHNH function, are non-specific and poorly formed in GeoHNH. Taken together, these outcomes suggest mechanistic differences between mesophilic and thermophilic Cas9 species.


Assuntos
Sistemas CRISPR-Cas , Simulação de Dinâmica Molecular , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Streptococcus pyogenes/metabolismo
8.
Antibiotics (Basel) ; 10(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34827322

RESUMO

Rhodothermus marinus is a halophilic extreme thermophile, with potential as a model organism for studies of the structural basis of antibiotic resistance. In order to facilitate genetic studies of this organism, we have surveyed the antibiotic sensitivity spectrum of R. marinus and identified spontaneous antibiotic-resistant mutants. R. marinus is naturally insensitive to aminoglycosides, aminocylitols and tuberactinomycins that target the 30S ribosomal subunit, but is sensitive to all 50S ribosomal subunit-targeting antibiotics examined, including macrolides, lincosamides, streptogramin B, chloramphenicol, and thiostrepton. It is also sensitive to kirromycin and fusidic acid, which target protein synthesis factors. It is sensitive to rifampicin (RNA polymerase inhibitor) and to the fluoroquinolones ofloxacin and ciprofloxacin (DNA gyrase inhibitors), but insensitive to nalidixic acid. Drug-resistant mutants were identified using rifampicin, thiostrepton, erythromycin, spiramycin, tylosin, lincomycin, and chloramphenicol. The majority of these were found to have mutations that are similar or identical to those previously found in other species, while several novel mutations were identified. This study provides potential selectable markers for genetic manipulations and demonstrates the feasibility of using R. marinus as a model system for studies of ribosome and RNA polymerase structure, function, and evolution.

9.
Biophys J ; 120(11): 2181-2191, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798566

RESUMO

Long interspersed nuclear element-1 (L1) is a retrotransposable element that autonomously replicates in the human genome, resulting in DNA damage and genomic instability. Activation of L1 in senescent cells triggers a type I interferon response and age-associated inflammation. Two open reading frames encode an ORF1 protein functioning as messenger RNA chaperone and an ORF2 protein providing catalytic activities necessary for retrotransposition. No function has been identified for the conserved, disordered N-terminal region of ORF1. Using microscopy and NMR spectroscopy, we demonstrate that ORF1 forms liquid droplets in vitro in a salt-dependent manner and that interactions between its N-terminal region and coiled-coil domain are necessary for phase separation. Mutations disrupting blocks of charged residues within the N-terminus impair phase separation, whereas some mutations within the coiled-coil domain enhance phase separation. Demixing of the L1 particle from the cytosol may provide a mechanism to protect the L1 transcript from degradation.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Chaperonas Moleculares , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Fases de Leitura Aberta , Domínios Proteicos , RNA Mensageiro
10.
Sci Rep ; 10(1): 16301, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004869

RESUMO

Enterococcus faecalis is a gram-positive organism responsible for serious infections in humans, but as with many bacterial pathogens, resistance has rendered a number of commonly used antibiotics ineffective. Here, we report the cryo-EM structure of the E. faecalis 70S ribosome to a global resolution of 2.8 Å. Structural differences are clustered in peripheral and solvent exposed regions when compared with Escherichia coli, whereas functional centres, including antibiotic binding sites, are similar to other bacterial ribosomes. Comparison of intersubunit conformations among five classes obtained after three-dimensional classification identifies several rotated states. Large ribosomal subunit protein bL31, which forms intersubunit bridges to the small ribosomal subunit, assumes different conformations in the five classes, revealing how contacts to the small subunit are maintained throughout intersubunit rotation. A tRNA observed in one of the five classes is positioned in a chimeric pe/E position in a rotated ribosomal state. The 70S ribosome structure of E. faecalis now extends our knowledge of bacterial ribosome structures and may serve as a basis for the development of novel antibiotic compounds effective against this pathogen.


Assuntos
Enterococcus faecalis/ultraestrutura , Subunidades Ribossômicas Maiores/ultraestrutura , Antibacterianos/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Conformação Proteica , Subunidades Ribossômicas Maiores/metabolismo
11.
Antibiotics (Basel) ; 9(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526926

RESUMO

Tiamulin is a semisynthetic pleuromutilin antibiotic that binds to the 50S ribosomal subunit A site and whose (((2-diethylamino)ethyl)thio)-acetic acid tail extends into the P site to interfere with peptide bond formation. We have isolated spontaneous tiamulin-resistant mutants of the thermophilic bacterium Thermus thermophilus, containing either single amino acid substitutions in ribosomal protein uL3 or single base substitutions in the peptidyltransferase active site of 23S rRNA. These mutations are consistent with those found in other organisms and are in close proximity to the crystallographically determined tiamulin binding site. We also conducted a cross-resistance analysis of nine other single-base substitutions in or near the peptidyltransferase active site, previously selected for resistance to structurally unrelated antibiotics. While some of the base substitutions in 23S rRNA are positioned to directly affect tiamulin-ribosome contacts, others are some distance from the tiamulin binding site, indicating an indirect mechanism of resistance. Similarly, amino acid substitutions in uL3 are predicted to act indirectly by destabilizing rRNA conformation in the active site. We interpret these observations in light of the available ribosome X-ray crystal structures. These results provide a more comprehensive profile of tiamulin resistance caused by mutations in the bacterial ribosome.

12.
J Am Chem Soc ; 142(3): 1348-1358, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31885264

RESUMO

CRISPR-Cas9 is a widely employed genome-editing tool with functionality reliant on the ability of the Cas9 endonuclease to introduce site-specific breaks in double-stranded DNA. In this system, an intriguing allosteric communication has been suggested to control its DNA cleavage activity through flexibility of the catalytic HNH domain. Here, solution NMR experiments and a novel Gaussian-accelerated molecular dynamics (GaMD) simulation method are used to capture the structural and dynamic determinants of allosteric signaling within the HNH domain. We reveal the existence of a millisecond time scale dynamic pathway that spans HNH from the region interfacing the adjacent RuvC nuclease and propagates up to the DNA recognition lobe in full-length CRISPR-Cas9. These findings reveal a potential route of signal transduction within the CRISPR-Cas9 HNH nuclease, advancing our understanding of the allosteric pathway of activation. Further, considering the role of allosteric signaling in the specificity of CRISPR-Cas9, this work poses the mechanistic basis for novel engineering efforts aimed at improving its genome-editing capability.


Assuntos
Sistemas CRISPR-Cas , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Regulação Alostérica , Desoxirribonucleases/metabolismo
13.
J Am Chem Soc ; 138(38): 12678-89, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27588339

RESUMO

The final step in the biosynthesis of the sesquiterpenoid antibiotic pentalenolactone (1) is the highly unusual cytochrome P450-catalyzed, oxidative rearrangement of pentalenolactone F (2), involving the transient generation and rearrangement of a neopentyl cation. In Streptomyces arenae this reaction is catalyzed by CYP161C2 (PntM), with highly conserved orthologs being present in at least 10 other Actinomycetes. Crystal structures of substrate-free PntM, as well as PntM with bound substrate 2, product 1, and substrate analogue 6,7-dihydropentalenolactone F (7) revealed interactions of bound ligand with three residues, F232, M77, and M81 that are unique to PntM and its orthologs and absent from essentially all other P450s. Site-directed mutagenesis, ligand-binding measurements, steady-state kinetics, and reaction product profiles established there is no special stabilization of reactive cationic intermediates by these side chains. Reduced substrate analogue 7 did not undergo either oxidative rearrangement or simple hydroxylation, suggesting that the C1 carbocation is not anchimerically stabilized by the 6,7-double bond of 2. The crystal structures also revealed plausible proton relay networks likely involved in the generation of the key characteristic P450 oxidizing species, Compound I, and in mediating stereospecific deprotonation of H-3re of the substrate. We conclude that the unusual carbocation intermediate results from outer shell electron transfer from the transiently generated C1 radical to the tightly paired heme-•Fe(3+)-OH radical species. The oxidative electron transfer is kinetically dominant as a result of the unusually strong steric barrier to oxygen rebound to the neopentyl center C-1si, which is flanked on each neighboring carbon by syn-axial substituents.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Streptomyces/metabolismo , Catálise , Sistema Enzimático do Citocromo P-450/genética , Hidroxilação , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Conformação Proteica , Sesquiterpenos/metabolismo
14.
PLoS Genet ; 12(7): e1006120, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27414415

RESUMO

Dosage compensation is an essential process that equalizes transcript levels of X-linked genes between sexes by forming a domain of coordinated gene expression. Throughout the evolution of Diptera, many different X-chromosomes acquired the ability to be dosage compensated. Once each newly evolved X-chromosome is targeted for dosage compensation in XY males, its active genes are upregulated two-fold to equalize gene expression with XX females. In Drosophila melanogaster, the CLAMP zinc finger protein links the dosage compensation complex to the X-chromosome. However, the mechanism for X-chromosome identification has remained unknown. Here, we combine biochemical, genomic and evolutionary approaches to reveal that expansion of GA-dinucleotide repeats likely accumulated on the X-chromosome over evolutionary time to increase the density of CLAMP binding sites, thereby driving the evolution of dosage compensation. Overall, we present new insight into how subtle changes in genomic architecture, such as expansions of a simple sequence repeat, promote the evolution of coordinated gene expression.


Assuntos
Proteínas de Ligação a DNA/genética , Repetições de Dinucleotídeos , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cromossomo X/genética , Motivos de Aminoácidos , Animais , Sítios de Ligação , Evolução Biológica , DNA/química , Feminino , Dosagem de Genes , Genes Ligados ao Cromossomo X , Ligação Genética , Genoma de Inseto , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA
15.
J Bacteriol ; 197(18): 2981-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26148717

RESUMO

UNLABELLED: The bacterial ribosome and its associated translation factors are frequent targets of antibiotics, and antibiotic resistance mutations have been found in a number of these components. Such mutations can potentially interact with one another in unpredictable ways, including the phenotypic suppression of one mutation by another. These phenotypic interactions can provide evidence of long-range functional interactions throughout the ribosome and its functional complexes and potentially give insights into antibiotic resistance mechanisms. In this study, we used genetics and experimental evolution of the thermophilic bacterium Thermus thermophilus to examine the ability of mutations in various components of the protein synthesis apparatus to suppress the streptomycin resistance phenotypes of mutations in ribosomal protein S12, specifically those located distant from the streptomycin binding site. With genetic selections and strain constructions, we identified suppressor mutations in EF-Tu or in ribosomal protein L11. Using experimental evolution, we identified amino acid substitutions in EF-Tu or in ribosomal proteins S4, S5, L14, or L19, some of which were found to also relieve streptomycin resistance. The wide dispersal of these mutations is consistent with long-range functional interactions among components of the translational machinery and indicates that streptomycin resistance can result from the modulation of long-range conformational signals. IMPORTANCE: The thermophilic bacterium Thermus thermophilus has become a model system for high-resolution structural studies of macromolecular complexes, such as the ribosome, while its natural competence for transformation facilitates genetic approaches. Genetic studies of T. thermophilus ribosomes can take advantage of existing high-resolution crystallographic information to allow a structural interpretation of phenotypic interactions among mutations. Using a combination of genetic selections, strain constructions, and experimental evolution, we find that certain mutations in the translation apparatus can suppress the phenotype of certain antibiotic resistance mutations. Suppression of resistance can occur by mutations located distant in the ribosome or in a translation factor. These observations suggest the existence of long-range conformational signals in the translating ribosome, particularly during the decoding of mRNA.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Estreptomicina/farmacologia , Thermus thermophilus/efeitos dos fármacos , Thermus thermophilus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia , Farmacorresistência Bacteriana , Modelos Moleculares , Mutação , Ácidos Nicotínicos , Conformação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos , Seleção Genética , Thermus thermophilus/genética
16.
J Bacteriol ; 196(21): 3776-83, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25157075

RESUMO

During protein synthesis, the ribosome undergoes conformational transitions between functional states, requiring communication between distant structural elements of the ribosome. Despite advances in ribosome structural biology, identifying the protein and rRNA residues governing these transitions remains a significant challenge. Such residues can potentially be identified genetically, given the predicted deleterious effects of mutations stabilizing the ribosome in discrete conformations and the expected ameliorating effects of second-site compensatory mutations. In this study, we employed genetic selections and experimental evolution to identify interacting mutations in the ribosome of the thermophilic bacterium Thermus thermophilus. By direct genetic selections, we identified mutations in 16S rRNA conferring a streptomycin dependence phenotype and from these derived second-site suppressor mutations relieving dependence. Using experimental evolution of streptomycin-independent pseudorevertants, we identified additional compensating mutations. Similar mutations could be evolved from slow-growing streptomycin-resistant mutants. While some mutations arose close to the site of the original mutation in the three-dimensional structure of the 30S ribosomal subunit and probably act directly by compensating for local structural distortions, the locations of others are consistent with long-range communication between specific structural elements within the ribosome.


Assuntos
Evolução Molecular Direcionada , Regulação Bacteriana da Expressão Gênica/fisiologia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Seleção Genética , Thermus thermophilus/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica , Thermus thermophilus/genética
17.
Antimicrob Agents Chemother ; 58(8): 4308-17, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24820088

RESUMO

Streptomycin is a bactericidal antibiotic that induces translational errors. It binds to the 30S ribosomal subunit, interacting with ribosomal protein S12 and with 16S rRNA through contacts with the phosphodiester backbone. To explore the structural basis for streptomycin resistance, we determined the X-ray crystal structures of 30S ribosomal subunits from six streptomycin-resistant mutants of Thermus thermophilus both in the apo form and in complex with streptomycin. Base substitutions at highly conserved residues in the central pseudoknot of 16S rRNA produce novel hydrogen-bonding and base-stacking interactions. These rearrangements in secondary structure produce only minor adjustments in the three-dimensional fold of the pseudoknot. These results illustrate how antibiotic resistance can occur as a result of small changes in binding site conformation.


Assuntos
Farmacorresistência Bacteriana/genética , Mutação Puntual , RNA Ribossômico 16S/metabolismo , Proteínas Ribossômicas/química , Subunidades Ribossômicas Menores de Bactérias/química , Antibacterianos/química , Antibacterianos/farmacologia , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Biossíntese de Proteínas/efeitos dos fármacos , RNA Ribossômico 16S/química , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Bactérias/efeitos dos fármacos , Subunidades Ribossômicas Menores de Bactérias/genética , Estreptomicina/química , Estreptomicina/farmacologia , Thermus thermophilus/química , Thermus thermophilus/efeitos dos fármacos , Thermus thermophilus/genética
18.
RNA ; 19(12): 1791-801, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24152548

RESUMO

The ribosome decodes mRNA by monitoring the geometry of codon-anticodon base-pairing using a set of universally conserved 16S rRNA nucleotides within the conformationally dynamic decoding site. By applying single-molecule FRET and X-ray crystallography, we have determined that conditional-lethal, streptomycin-dependence mutations in ribosomal protein S12 interfere with tRNA selection by allowing conformational distortions of the decoding site that impair GTPase activation of EF-Tu during the tRNA selection process. Distortions in the decoding site are reversed by streptomycin or by a second-site suppressor mutation in 16S rRNA. These observations encourage a refinement of the current model for decoding, wherein ribosomal protein S12 and the decoding site collaborate to optimize codon recognition and substrate discrimination during the early stages of the tRNA selection process.


Assuntos
Proteínas de Bactérias/química , Proteínas Ribossômicas/química , Thermus thermophilus/genética , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli , Modelos Moleculares , Conformação de Ácido Nucleico , Mutação Puntual , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , RNA de Transferência de Fenilalanina/química , Proteínas Ribossômicas/genética , Ribossomos/química
19.
Artigo em Inglês | MEDLINE | ID: mdl-23989164

RESUMO

High-resolution ribosome structures determined by X-ray crystallography have provided important insights into the mechanism of translation. Such studies have thus far relied on large ribosome crystals kept at cryogenic temperatures to reduce radiation damage. Here, the application of serial femtosecond X-ray crystallography (SFX) using an X-ray free-electron laser (XFEL) to obtain diffraction data from ribosome microcrystals in liquid suspension at ambient temperature is described. 30S ribosomal subunit microcrystals diffracted to beyond 6 Šresolution, demonstrating the feasibility of using SFX for ribosome structural studies. The ability to collect diffraction data at near-physiological temperatures promises to provide fundamental insights into the structural dynamics of the ribosome and its functional complexes.


Assuntos
Elétrons , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura , Thermus thermophilus/química , Cristalização , Cristalografia por Raios X , Lasers , Subunidades Ribossômicas Menores de Bactérias/química , Temperatura , Difração de Raios X
20.
Nat Commun ; 4: 1355, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23322043

RESUMO

During protein synthesis, the ribosome selects aminoacyl-transfer RNAs with anticodons matching the messenger RNA codon present in the A site of the small ribosomal subunit. The aminoglycoside antibiotic streptomycin disrupts decoding by binding close to the site of codon recognition. Here we use X-ray crystallography to define the impact of streptomycin on the decoding site of the Thermus thermophilus 30S ribosomal subunit in complexes with cognate or near-cognate anticodon stem-loop analogues and messenger RNA. Our crystal structures display a significant local distortion of 16S ribosomal RNA induced by streptomycin, including the crucial bases A1492 and A1493 that participate directly in codon recognition. Consistent with kinetic data, we observe that streptomycin stabilizes the near-cognate anticodon stem-loop analogue complex, while destabilizing the cognate anticodon stem-loop analogue complex. These data reveal how streptomycin disrupts the recognition of cognate anticodon stem-loop analogues and yet improves recognition of a near-cognate anticodon stem-loop analogue.


Assuntos
Código Genético/efeitos dos fármacos , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/efeitos dos fármacos , Estreptomicina/farmacologia , Thermus thermophilus/genética , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Fases de Leitura Aberta , RNA Ribossômico 16S/química , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA