Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 34(6): 967-978, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39038849

RESUMO

The human gut microbiota is of increasing interest, with metagenomics a key tool for analyzing bacterial diversity and functionality in health and disease. Despite increasing efforts to expand microbial gene catalogs and an increasing number of metagenome-assembled genomes, there have been few pan-metagenomic association studies and in-depth functional analyses across different geographies and diseases. Here, we explored 6014 human gut metagenome samples across 19 countries and 23 diseases by performing compositional, functional cluster, and integrative analyses. Using interpreted machine learning classification models and statistical methods, we identified Fusobacterium nucleatum and Anaerostipes hadrus with the highest frequencies, enriched and depleted, respectively, across different disease cohorts. Distinct functional distributions were observed in the gut microbiomes of both westernized and nonwesternized populations. These compositional and functional analyses are presented in the open-access Human Gut Microbiome Atlas, allowing for the exploration of the richness, disease, and regional signatures of the gut microbiota across different cohorts.


Assuntos
Microbioma Gastrointestinal , Metagenoma , Metagenômica , Humanos , Microbioma Gastrointestinal/genética , Metagenômica/métodos , Aprendizado de Máquina , Fusobacterium nucleatum/genética , Bactérias/classificação , Bactérias/genética
3.
Nature ; 590(7847): 649-654, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627808

RESUMO

The cell cycle, over which cells grow and divide, is a fundamental process of life. Its dysregulation has devastating consequences, including cancer1-3. The cell cycle is driven by precise regulation of proteins in time and space, which creates variability between individual proliferating cells. To our knowledge, no systematic investigations of such cell-to-cell proteomic variability exist. Here we present a comprehensive, spatiotemporal map of human proteomic heterogeneity by integrating proteomics at subcellular resolution with single-cell transcriptomics and precise temporal measurements of individual cells in the cell cycle. We show that around one-fifth of the human proteome displays cell-to-cell variability, identify hundreds of proteins with previously unknown associations with mitosis and the cell cycle, and provide evidence that several of these proteins have oncogenic functions. Our results show that cell cycle progression explains less than half of all cell-to-cell variability, and that most cycling proteins are regulated post-translationally, rather than by transcriptomic cycling. These proteins are disproportionately phosphorylated by kinases that regulate cell fate, whereas non-cycling proteins that vary between cells are more likely to be modified by kinases that regulate metabolism. This spatially resolved proteomic map of the cell cycle is integrated into the Human Protein Atlas and will serve as a resource for accelerating molecular studies of the human cell cycle and cell proliferation.


Assuntos
Ciclo Celular , Proteogenômica/métodos , Análise de Célula Única/métodos , Transcriptoma , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula , Proliferação de Células , Humanos , Interfase , Mitose , Proteínas Oncogênicas/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Fatores de Tempo
4.
Science ; 356(6340)2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28495876

RESUMO

Resolving the spatial distribution of the human proteome at a subcellular level can greatly increase our understanding of human biology and disease. Here we present a comprehensive image-based map of subcellular protein distribution, the Cell Atlas, built by integrating transcriptomics and antibody-based immunofluorescence microscopy with validation by mass spectrometry. Mapping the in situ localization of 12,003 human proteins at a single-cell level to 30 subcellular structures enabled the definition of the proteomes of 13 major organelles. Exploration of the proteomes revealed single-cell variations in abundance or spatial distribution and localization of about half of the proteins to multiple compartments. This subcellular map can be used to refine existing protein-protein interaction networks and provides an important resource to deconvolute the highly complex architecture of the human cell.


Assuntos
Imagem Molecular , Organelas/química , Organelas/metabolismo , Mapas de Interação de Proteínas , Proteoma/análise , Proteoma/metabolismo , Análise de Célula Única , Linhagem Celular , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Espectrometria de Massas , Microscopia de Fluorescência , Mapeamento de Interação de Proteínas , Proteoma/genética , Reprodutibilidade dos Testes , Frações Subcelulares , Transcriptoma
5.
Science ; 347(6220): 1260419, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613900

RESUMO

Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.


Assuntos
Bases de Dados de Proteínas , Proteoma/metabolismo , Processamento Alternativo , Linhagem Celular , Feminino , Genes , Código Genético , Humanos , Internet , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Análise Serial de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/genética , Distribuição Tecidual , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA