Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(23): 42276-42282, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366684

RESUMO

We report the dynamics and control of the orientational and positional order of ensembles of gold nanorods suspended in air at standard temperature and pressure using externally applied electric fields, demonstrating an active aerosol. Light filter, valve and gradient responses are shown, establishing active aerosols as a unique type of optical element we term component-less optics.

2.
Phys Rev E ; 105(2-2): 025103, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291160

RESUMO

Powerful rogue ocean waves have been objects of fascination for centuries. Elusive and awe-inspiring, with the potential to inflict catastrophic damage, rogue waves remain unpredictable and imperfectly understood. To gain further insight into their behavior, we analyzed 3 441 188 683 ocean surface waves to determine the statistical height distribution of the largest waves. We found that the distribution of rare events which resolves the St. Petersburg paradox also describes the relative height distribution of the largest waves. This result is expected to contribute to the modeling of ocean surface dynamics and improve the accuracy of marine weather forecasts.

3.
Rev Sci Instrum ; 92(11): 115106, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852551

RESUMO

Coherent scatter x-ray imaging systems are sensitive to material structure and chemical composition, and generate soft-material images with contrast superior to conventional transmission x-ray imaging. For practicality in medical or security applications, the image data acquisition time should be <10 min. Our approach is a multi-beam projection imaging design. Previously, as a development stage, we implemented a synchrotron-based system with five coplanar pencil beams and continuous motion of the object. In the work reported here, we developed a more practical coherent scatter projection imaging system using a conventional x-ray tube source. The object is irradiated by an array of up to three rows by five columns of pencil beams, and motorized stages translate the object through the beams for step-and-shoot acquisition. For the same tube loading, broad spectrum beams, such as 110 kVp filtered with 2.25 mm Al, were found to provide a higher signal-difference-to-noise ratio between soft materials in scatter images than lower kVp, more heavily filtered beams that have a narrower, lower intensity spectrum. The shortest acquisition time for a 6.0 × 10.0 cm2 object with 6000 pixels was 8.8 min. The width of a sharp edge in the scatter image was consistent with the pencil beam diameter. Contrast-detail performance was similar to our synchrotron-based system. In this first x-ray tube-based system, for simplicity, the transmitted x rays are measured through attenuators using the same flat-panel detector that measures scattered x rays. As a result, the primary image quality was reduced.

4.
Nutrients ; 13(4)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801767

RESUMO

Mental stress has been shown to induce cardiovascular events, likely due to its negative impact on vascular function. Flavanols, plant-derived polyphenolic compounds, improve endothelial function and blood pressure (BP) in humans, however their effects during stress are not known. This study examined the effects of acute intake of cocoa flavanols on stress-induced changes on vascular function. In a randomised, controlled, double-blind, cross-over intervention study, 30 healthy men ingested a cocoa flavanol beverage (high-flavanol: 150 mg vs. low-flavanol < 4 mg (-)-epicatechin) 1.5 h before an 8-min mental stress task). Forearm blood flow (FBF), BP, and cardiovascular activity were assessed pre- and post-intervention, both at rest and during stress. Endothelial function (brachial flow-mediated dilatation, FMD) and brachial BP were measured before the intervention and 30 and 90 min post-stress. FMD was impaired 30 min post-stress, yet high-flavanol cocoa attenuated this decline and remained significantly higher compared to low-flavanol cocoa at 90 min post-stress. High-flavanol cocoa increased FBF at rest and during stress. Stress-induced cardiovascular and BP responses were similar in both conditions. Flavanols are effective at counteracting mental stress-induced endothelial dysfunction and improving peripheral blood flow during stress. These findings suggest the use of flavanol-rich dietary strategies to protect vascular health during stress.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Chocolate/análise , Flavonóis/farmacologia , Vasodilatação/efeitos dos fármacos , Adulto , Pressão Sanguínea/fisiologia , Artéria Braquial/fisiologia , Estudos Cross-Over , Método Duplo-Cego , Flavonóis/química , Humanos , Masculino , Estresse Psicológico , Vasodilatação/fisiologia
5.
Int J Food Sci ; 2021: 6669544, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33564674

RESUMO

A commercial fava bean protein isolate and a liquid nutritional product formulated with it were tested by validated HPLC methods for the favism-associated pyrimidine glycoside vicine, the dopamine precursor levodopa, and the biogenic amine tyramine. The vicine, levodopa, and tyramine concentrations in the protein isolate-306, 13.3, and <0.5 mg/kg, respectively-when expressed on a protein basis-34, 1.5, and <0.06 mg/100 g protein, respectively-were at least 96% lower than the vicine, levodopa, and tyramine (protein-based) concentrations reported for fava beans (≥900, ~200, and ~4 mg/100 g protein, respectively). This was also true for the vicine (13 mg/kg or 22 mg/100 g protein), levodopa (≤0.17 mg/kg or ≤0.3 mg/100 g protein), and tyramine (0.08 mg/kg or 0.14 mg/100 g protein) concentrations in the nutritional product. On the basis of these data, one serving (11 fl. oz.) of the nutritional product would deliver approximately 5 mg of vicine, <1 mg of levodopa, and <0.1 mg of tyramine.

6.
Sci Rep ; 10(1): 19409, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235219

RESUMO

Cocoa flavanols protect humans against vascular disease, as evidenced by improvements in peripheral endothelial function, likely through nitric oxide signalling. Emerging evidence also suggests that flavanol-rich diets protect against cognitive aging, but mechanisms remain elusive. In a randomized double-blind within-subject acute study in healthy young adults, we link these two lines of research by showing, for the first time, that flavanol intake leads to faster and greater brain oxygenation responses to hypercapnia, as well as higher performance only when cognitive demand is high. Individual difference analyses further show that participants who benefit from flavanols intake during hypercapnia are also those who do so in the cognitive challenge. These data support the hypothesis that similar vascular mechanisms underlie both the peripheral and cerebral effects of flavanols. They further show the importance of studies combining physiological and graded cognitive challenges in young adults to investigate the actions of dietary flavanols on brain function.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Cognição/efeitos dos fármacos , Flavonóis/administração & dosagem , Oxigênio/metabolismo , Adulto , Cacau , Córtex Cerebral/irrigação sanguínea , Circulação Cerebrovascular/efeitos dos fármacos , Suplementos Nutricionais , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Hipercapnia/dietoterapia , Hipercapnia/fisiopatologia , Hipercapnia/psicologia , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio/efeitos dos fármacos , Oxiemoglobinas/metabolismo , Adulto Jovem
7.
Opt Express ; 28(15): 22891-22898, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752542

RESUMO

Self-assembled plasmonic metasurfaces are promising optical platforms to achieve accessible flat optics, due to their strong light-matter interaction, nanometer length scale precision, large area, light weight, and high-throughput fabrication. Here, using photothermal continuous wave laser lithography, we show the spectral and spatial tuning of metasurfaces comprised of a monolayer of ligand capped hexagonally packed gold nanospheres. To tune the spectral response of the metasurfaces, we show that by controlling the intensity of a laser focused onto the metasurface that the absorption peak can be reconfigured from the visible to near-infrared wavelength. The irreversible spectral tuning mechanism is attributed to photothermal modification of the surface morphology. Combining self-assembled metasurfaces with laser lithography, we demonstrate an optically thin (λ/42), spectrally selective plasmonic Fresnel zone plate. This work establishes a new pathway for creating flat, large area, frequency selective optical elements using self-assembled plasmonic metasurfaces and laser lithography.

8.
Lancet Child Adolesc Health ; 4(2): 121-130, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31786093

RESUMO

BACKGROUND: Marked variation exists in the use of genomic data in tumour diagnosis, and optimal integration with conventional diagnostic technology remains uncertain despite several studies reporting improved diagnostic accuracy, selection for targeted treatments, and stratification for trials. Our aim was to assess the added value of molecular profiling in routine clinical practice and the impact on conventional and experimental treatments. METHODS: This population-based study assessed the diagnostic and clinical use of DNA methylation-based profiling in childhood CNS tumours using two large national cohorts in the UK. In the diagnostic cohort-which included routinely diagnosed CNS tumours between Sept 1, 2016, and Sept 1, 2018-we assessed how the methylation profile altered or refined diagnosis in routine clinical practice and estimated how this would affect standard patient management. For the archival cohort of diagnostically difficult cases, we established how many cases could be solved using modern standard pathology, how many could only be solved using the methylation profile, and how many remained unsolvable. FINDINGS: Of 484 patients younger than 20 years with CNS tumours, 306 had DNA methylation arrays requested by the neuropathologist and were included in the diagnostic cohort. Molecular profiling added a unique contribution to clinical diagnosis in 107 (35%; 95% CI 30-40) of 306 cases in routine diagnostic practice-providing additional molecular subtyping data in 99 cases, amended the final diagnosis in five cases, and making potentially significant predictions in three cases. We estimated that it could change conventional management in 11 (4%; 95% CI 2-6) of 306 patients. Among 195 historically difficult-to-diagnose tumours in the archival cohort, 99 (51%) could be diagnosed using standard methods, with the addition of methylation profiling solving a further 34 (17%) cases. The remaining 62 (32%) cases were unresolved despite specialist pathology and methylation profiling. INTERPRETATION: Together, these data provide estimates of the impact that could be expected from routine implementation of genomic profiling into clinical practice, and indicate limitations where additional techniques will be required. We conclude that DNA methylation arrays are a useful diagnostic adjunct for childhood CNS tumours. FUNDING: The Brain Tumour Charity, Children with Cancer UK, Great Ormond Street Hospital Children's Charity, Olivia Hodson Cancer Fund, Cancer Research UK, and the National Institute of Health Research.


Assuntos
Neoplasias do Sistema Nervoso Central/diagnóstico , Metilação de DNA/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Terapia de Alvo Molecular , Biomarcadores Tumorais/genética , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/terapia , Criança , Humanos , Estudos Retrospectivos , Telomerase
9.
Nanoscale ; 11(43): 20693-20706, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31642466

RESUMO

Synthetic DNA templated nanostructures offer an excellent platform for the precise spatial and orientational positioning of organic and inorganic nanomaterials. Previous reports have shown its applicability in the organization of plasmonic nanoparticles in a number of geometries for the purpose of realizing tunable nanoscale optical devices. However, translation of nanoparticle-DNA constructs to application requires additional efforts to increase scalability, reproducibility, and formation yields. Understanding all these factors is, in turn, predicated on in-depth analysis of each structure and comparing how formation changes with complexity. Towards the latter goal, we assemble seven unique plasmonic nanostructure symmetries of increasing complexity based on assembly of gold nanorods and nanoparticles on two different DNA origami templates, a DNA triangle and rhombus, and characterize them using gel electrophoresis, atomic force- and transmission electron microscopy, as well as optical spectroscopy. In particular, we focus on how much control can be elicited over yield, reproducibility, shape, size, inter-particle angles, gaps, and plasmon shifts as compared to expectations from computer simulations as structural complexity increases. We discuss how these results can contribute to establishing process principles for creating DNA templated plasmonic nanostructures.


Assuntos
DNA/química , Nanoestruturas/química , Ouro/química , Nanopartículas Metálicas/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Espectrofotometria
10.
Nutrients ; 11(5)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096595

RESUMO

Preventing muscle wasting in certain chronic diseases including cancer is an ongoing challenge. Studies have shown that polyphenols derived from fruits and vegetables shows promise in reducing muscle loss in cellular and animal models of muscle wasting. We hypothesized that polyphenols derived from plums (Prunus domestica) could have anabolic and anti-catabolic benefits on skeletal muscle. The effects of a polyphenol-enriched plum extract (PE60) were evaluated in vitro on C2C12 and Colon-26 cancer cells. Data were analyzed using a one-way ANOVA and we found that treatment of myocytes with plum extract increased the cell size by ~3-fold (p < 0.05) and stimulated myoblast differentiation by ~2-fold (p < 0.05). Plum extract induced total protein synthesis by ~50% (p < 0.05), reduced serum deprivation-induced total protein degradation by ~30% (p < 0.05), and increased expression of Insulin-Like Growth Factor-1 (IGF-1) by ~2-fold (p < 0.05). Plum extract also reduced tumor necrosis factor α (TNFα)-induced nuclear factor κB (NFκB) activation by 80% (p < 0.05) in A549/NF-κB-luc cells. In addition, plum extract inhibited the growth of Colon-26 cancer cells, and attenuated cytotoxicity in C2C12 myoblasts induced by soluble factors released from Colon-26 cells. In conclusion, our data suggests that plum extract may have pluripotent health benefits on muscle, due to its demonstrated ability to promote myogenesis, stimulate muscle protein synthesis, and inhibit protein degradation. It also appears to protect muscle cell from tumor-induced cytotoxicity.


Assuntos
Neoplasias do Colo , Frutas/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Prunus domestica/química , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Extratos Vegetais/química , Polifenóis/química
11.
Rev Sci Instrum ; 90(3): 035104, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30927807

RESUMO

X-ray image formation using scattered radiation can yield a superior contrast-to-noise ratio compared to conventional transmission x-ray imaging. A barrier to practical implementation of scatter imaging systems has been slow image acquisition. We have developed a projection imaging system which uses five monoenergetic pencil beams in combination with continuous phantom motion to achieve acquisition times that are practical for medical and security applications. The system was configured at the Canadian Light Source synchrotron and consists of a primary collimator, motorized stages for phantom translation, a flat-panel x-ray detector for measuring scattered x rays, and photodiodes for simultaneously measuring transmitted x rays. Image generation requires several corrections to raw data artifacts arising from the nature of the detector, x-ray source, and acquisition procedure. We developed a novel correction for pixel location inaccuracy arising from continuous phantom motion. A five-beam system had nearly five times faster acquisition than a single-beam system. Continuous motion acquisition was approximately 30 times faster than step-and-shoot acquisition. The total acquisition time for a 9 cm × 5 cm phantom with 8425 pixels was just over 2 min. Image quality was also assessed, in part to determine its relation to acquisition speed. The width of sharp material boundaries was found to be at a minimum equal to the pencil beam width (1.75 mm) and to have an additional width equal to the product of the phantom translation speed and the acquisition time per pixel (up to 1.0 mm in our experiments). Contrast-detail performance was independent of acquisition speed, depending only on phantom entrance x-ray fluence. Pixel signal-to-noise ratio measurements indicate that detector readout noise is important for the scatter data, even for phantom air kerma as high as 30 mGy. Images could be improved with a detector having lower readout noise and higher sensitivity. Its spatial resolution could be moderate. We confirmed that for the same range of λ-1 sin(θ/2), where λ is the x-ray wavelength and θ is the scattering angle, scatter images acquired using different beam energies (33-70 keV) had nearly identical contrast.

12.
ACS Nano ; 13(4): 3875-3883, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30794377

RESUMO

Information display utilizing plasmonic color generation has recently emerged as an alternative paradigm to traditional printing and display technologies. However, many implementations so far have either presented static pixels with a single display state or rely on relatively slow switching mechanisms such as chemical transformations or liquid crystal transitions. Here, we demonstrate spatial, spectral, and temporal control of light using dynamic plasmonic pixels that function through the electric-field-induced alignment of plasmonic nanorods in organic suspensions. By tailoring the geometry and composition (Au and Au@Ag) of the nanorods, we illustrate light modulation across a significant portion of the visible and infrared spectrum (600-2400 nm). The fast (∼30 µs), reversible nanorod alignment is manifested as distinct color changes, characterized by shifts of observed chromaticity and luminance. Integration into larger device architectures is showcased by the fabrication of a seven-segment numerical indicator. The control of light on demand achieved in these dynamic plasmonic pixels establishes a favorable platform for engineering high-performance optical devices.

13.
World Neurosurg ; 115: 309-319, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29729466

RESUMO

BACKGROUND: Calcifying pseudoneoplasm of the neuraxis (CAPNON) is a rare central nervous system lesion that can occur in both the brain and the spine. Although this entity is poorly understood, radiologic and histological features have been identified. CASE DESCRIPTION: We report a unique case of a 31-year-old patient who was managed with antiepileptic medication for 17 years before requiring neurosurgical intervention for tumor progression. T2-weighted magnetic resonance imaging revealed hyperintensity within the tumor with extensive associated vasogenic edema, which is not normally associated with CAPNON. Resection was successful with no complications. CONCLUSIONS: The present case illustrates the long-term natural history of CAPNON before resection and highlights the variations in radiologic appearance that may be associated with this poorly understood entity.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Calcinose/diagnóstico por imagem , Calcinose/cirurgia , Imageamento por Ressonância Magnética/tendências , Adulto , Feminino , Humanos , Fatores de Tempo
14.
J Phys Chem Lett ; 9(7): 1676-1681, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29547298

RESUMO

The interaction between plasmonic and excitonic systems and the formation of hybridized states is an area of intense interest due to the potential to create exotic light-matter states. We report herein coupling between the leaky surface plasmon polariton (SPP) modes of single Ag nanowires and excitons of a cyanine dye (TDBC) in an open nanocavity. Silver nanowires were spin-cast onto glass coverslips, and the wavevector of the leaky SPP mode was measured by back focal plane (BFP) microscopy. Performing these measurements at different wavelengths allows the generation of dispersion curves, which show avoided crossings after deposition of a concentrated TDBC-PVA film. The Rabi splitting frequencies (Ω) determined from the dispersion curves vary between nanowires, with a maximum value of Ω = 390 ± 80 meV. The experiments also show an increase in attenuation of the SPP mode in the avoided crossing region. The ability to measure attenuation for the hybrid exciton-SPP states is a powerful aspect of these single nanowire experiments because this quantity is not readily available from ensemble experiments.

15.
J Phys Chem Lett ; 8(19): 4935-4941, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28945384

RESUMO

Transient absorption microscopy (TAM) measurements have been used to study the optical properties of surface plasmon polariton (SPP) modes in gold nanoplates on a glass substrate. For thin gold nanoplates, the TAM images show an oscillation in the signal across the plate due to interference between the "bound" and "leaky" SPP modes. The wavelength of the interference pattern is given by λ = 2π/Δk, where Δk is the difference between the wavevectors for the bound and leaky modes and is sensitive to the dielectric constant of the material above the gold nanoplate. Back focal plane imaging was also used to measure the wavevector of the leaky mode, which, in combination with the Δk information from the TAM images, enabled the bound mode wavevector to be determined. These experiments represent the first far-field optical measurement of the wavevector for the bound mode in metal nanostructures.

16.
J Phys Chem C Nanomater Interfaces ; 121(21): 11623-11631, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28736586

RESUMO

The optical properties of plasmonic nanoparticles are strongly dependent on interactions with other nanoparticles, which complicates analysis for systems larger than a few particles. In this work we examined heat dissipation in aggregated nanoparticles, and its influence on surface enhanced Raman scattering (SERS), through correlated photothermal heterodyne imaging, electron microscopy and SERS measurements. For dimers the per particle absorption cross-sections show evidence of interparticle coupling, however, the effects are much smaller than those for the field enhancements that are important for SERS. For larger aggregates the total absorption was observed to be simply proportional to aggregate volume. This observation allows us to model light absorption and heating in the aggregates by assuming that the particles act as independent heat sources. The heat dissipation calculations show that very high temperatures can be created at the nanoparticle surface, and that the temperature decreases with increasing thermal conductivity of the surroundings. This is in agreement with the SERS measurements that show faster signal degradation for air compared to water environments.

17.
J Nutr ; 147(3): 377-383, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28148685

RESUMO

Background: Extruded rice grains are often cofortified with iron and zinc. However, it is uncertain if the addition of zinc to iron-fortified rice affects iron absorption and whether this is zinc-compound specific.Objective: We investigated whether zinc, added as zinc oxide (ZnO) or zinc sulfate (ZnSO4), affects human iron absorption from extruded rice fortified with ferric pyrophosphate (FePP).Methods: In 19 iron-depleted Swiss women (plasma ferritin ≤16.5 µ/L) aged between 20 and 39 y with a normal body mass index (in kg/m2; 18.7-24.8), we compared iron absorption from 4 meals containing fortified extruded rice with 4 mg Fe and 3 mg Zn. Three of the meals contained extruded rice labeled with FePP (57FePP): 1) 1 meal without added zinc (57FePP-Zn), 2) 1 cofortified with ZnO (57FePP+ZnO), and 3) 1 cofortified with ZnSO4 (57FePP+ZnSO4). The fourth meal contained extruded rice without iron or zinc, extrinsically labeled with ferrous sulfate (58FeSO4) added as a solution after cooking. All 4 meals contained citric acid. Iron bioavailability was measured by isotopic iron ratios in red blood cells. We also measured relative in vitro iron solubility from 57FePP-Zn, 57FePP+ZnO, and 57FePP+ZnSO4 expressed as a fraction of FeSO4 solubility.Results: Geometric mean fractional iron absorption (95% CI) from 57FePP+ZnSO4 was 4.5% (3.4%, 5.8%) and differed from 57FePP+ZnO (2.7%; 1.8%, 4.1%) (P < 0.03); both did not differ from 57FePP-Zn: 4.0% (2.8%, 5.6%). Relative iron bioavailabilities compared with 58FeSO4 were 62%, 57%, and 38% from 57FePP+ZnSO4, 57FePP-Zn, and 57FePP+ZnO, respectively. In vitro solubility from 57FePP+ZnSO4 differed from that of 57FePP-Zn (14.3%; P < 0.02) but not from that of 57FePP+ZnO (10.2% compared with 13.1%; P = 0.08).Conclusions: In iron-depleted women, iron absorption from FePP-fortified extruded rice cofortified with ZnSO4 was 1.6-fold (95% CI: 1.4-, 1.9-fold) that of rice cofortified with ZnO. These findings suggest that ZnSO4 may be the preferable zinc cofortificant for optimal iron bioavailability of iron-fortified extruded rice. This trial was registered at clinicaltrials.gov as NCT02255942.


Assuntos
Difosfatos/metabolismo , Ferro/farmacocinética , Oryza/química , Óxido de Zinco/farmacologia , Sulfato de Zinco/farmacologia , Adulto , Disponibilidade Biológica , Difosfatos/química , Feminino , Manipulação de Alimentos , Alimentos Fortificados , Humanos , Ferro/química , Ferro/metabolismo , Isótopos de Ferro/farmacocinética , Adulto Jovem , Sulfato de Zinco/química
18.
Pract Neurol ; 16(4): 312-4, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27029468

RESUMO

Rheumatoid meningitis is a rare, potentially treatable condition that can mimic a wide range of neurological conditions, including vascular syndromes and encephalopathies. Despite a concurrent history of rheumatoid arthritis, patients often have no active synovitis. Here we describe a patient with rheumatoid meningitis who presented to a hyperacute stroke unit with dysarthria on waking and transient facial droop.


Assuntos
Artrite Reumatoide/complicações , Meningite/etiologia , Idoso , Artrite Reumatoide/diagnóstico , Feminino , Humanos , Doenças do Sistema Nervoso
19.
ACS Nano ; 10(3): 3375-81, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26866536

RESUMO

Understanding how surface plasmon polaritons (SPPs) propagate in metal nanostructures is important for the development of plasmonic devices. In this paper, we study the transmission of SPPs between single-crystal gold nanobars on a glass substrate using transient absorption microscopy. The coupled structures were produced by creating gaps in single nanobars by focused ion beam milling. SPPs were launched by focusing the pump laser at the end of the nanobar, and the transmission across the gaps was imaged by scanning the probe laser over the nanostructure. The results show larger losses at small gap sizes. Finite element method calculations were used to investigate this effect. The calculations show two main modes for nanobars on a glass surface: a leaky mode localized at the air-gold interface, and a bound mode localized at the glass-gold interface. At specific gap sizes (approximately 50 nm for our system), these SPP modes can excite localized surface plasmon modes associated with the gap, which dissipate energy. This increases the energy losses at small gap sizes. Experiments and simulations were also performed for the nanobars in microscope immersion oil, which creates a more homogeneous optical environment, and consistent results were observed.

20.
Nanotechnology ; 26(35): 354001, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26266335

RESUMO

Absorption based microscopy measurements are emerging as important tools for studying nanomaterials. This review discusses the three most common techniques for performing these experiments: transient absorption microscopy, photothermal heterodyne imaging, and spatial modulation spectroscopy. The focus is on the application of these techniques to imaging and detection, using examples taken from the authors' laboratory. The advantages and disadvantages of the three methods are discussed, with an emphasis on the unique information that can be obtained from these experiments, in comparison to conventional emission or scattering based microscopy experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA