Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(11): 2466-2474, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36917458

RESUMO

Lipid-shelled microbubbles (MBs) offer potential as theranostic agents, capable of providing both contrast enhancement in ultrasound imaging as well as a route for triggered drug release and improved localized drug delivery. A common motif in the design of such therapeutic vehicles is the attachment of the drug carrier, often in the form of liposomes, to the microbubble. Traditionally, such attachments have been based around biotin-streptavidin and maleimide-PDP chemistries. Comparatively, the use of DNA-lipid tethers offers potential advantage. First, their specificity permits the construction of more complex architectures that might include bespoke combinations of different drug-loaded liposomes and/or targeting groups, such as affimers or antibodies. Second, the use of dual-lipid tether strategies should increase the strength of the individual tethers tethering the liposomes to the bubbles. The ability of cholesterol-DNA (cDNA) tethers for conjugation of liposomes to supported lipid bilayers has previously been demonstrated. For in vivo applications, bubbles and liposomes often contain a proportion of polyethylene glycol (PEG) to promote stealth-like properties and increase lifetimes. However, the associated steric effects may hinder tethering of the drug payload. We show that while the presence of PEG reduced the tethering affinity, cDNA can still be used for the attachment of liposomes to a supported lipid bilayer (SLB) as measured via QCM-D. Importantly, we show, for the first time, that QCM-D can be used to study the tethering of microbubbles to SLBs using cDNA, signified by a decrease in the magnitude of the frequency shift compared to liposomes alone due to the reduced density of the MBs. We then replicate this tethering interaction in the bulk and observe attachment of liposomes to the shell of a central MB and hence formation of a model therapeutic microbubble.


Assuntos
Lipossomos , Microbolhas , DNA Complementar , Polietilenoglicóis , Bicamadas Lipídicas , Colesterol
2.
Rev Sci Instrum ; 92(7): 074105, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34340422

RESUMO

Microbubbles (MBs) have a multitude of applications including as contrast agents in ultrasound imaging and as therapeutic drug delivery vehicles, with further scope for combining their diagnostic and therapeutic properties (known as theranostics). MBs used clinically are commonly made by mechanical agitation or sonication methods, which offer little control over population size and dispersity. Furthermore, clinically used MBs are yet to be used therapeutically and further research is needed to develop these theranostic agents. In this paper, we present our MB production instrument "Horizon," which is a robust, portable, and user-friendly instrument, integrating the key components for producing MBs using microfluidic flow-focusing devices. In addition, we present the system design and specifications of Horizon and the optimized protocols that have so far been used to produce MBs with specific properties. These include MBs with tailored size and low dispersity (monodisperse); MBs with a diameter of ∼2 µm, which are more disperse but also produced in higher concentration; nanobubbles with diameters of 100-600 nm; and therapeutic MBs with drug payloads for targeted delivery. Multiplexed chips were able to improve production rates up to 16-fold while maintaining production stability. This work shows that Horizon is a versatile instrument with potential for mass production and use across many research facilities, which could begin to bridge the gap between therapeutic MB research and clinical use.


Assuntos
Microbolhas , Microfluídica , Meios de Contraste , Dispositivos Lab-On-A-Chip , Ultrassonografia
3.
Theranostics ; 10(24): 10973-10992, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042265

RESUMO

Most cancer patients receive chemotherapy at some stage of their treatment which makes improving the efficacy of cytotoxic drugs an ongoing and important goal. Despite large numbers of potent anti-cancer agents being developed, a major obstacle to clinical translation remains the inability to deliver therapeutic doses to a tumor without causing intolerable side effects. To address this problem, there has been intense interest in nanoformulations and targeted delivery to improve cancer outcomes. The aim of this work was to demonstrate how vascular endothelial growth factor receptor 2 (VEGFR2)-targeted, ultrasound-triggered delivery with therapeutic microbubbles (thMBs) could improve the therapeutic range of cytotoxic drugs. Methods: Using a microfluidic microbubble production platform, we generated thMBs comprising VEGFR2-targeted microbubbles with attached liposomal payloads for localised ultrasound-triggered delivery of irinotecan and SN38 in mouse models of colorectal cancer. Intravenous injection into tumor-bearing mice was used to examine targeting efficiency and tumor pharmacodynamics. High-frequency ultrasound and bioluminescent imaging were used to visualise microbubbles in real-time. Tandem mass spectrometry (LC-MS/MS) was used to quantitate intratumoral drug delivery and tissue biodistribution. Finally, 89Zr PET radiotracing was used to compare biodistribution and tumor accumulation of ultrasound-triggered SN38 thMBs with VEGFR2-targeted SN38 liposomes alone. Results: ThMBs specifically bound VEGFR2 in vitro and significantly improved tumor responses to low dose irinotecan and SN38 in human colorectal cancer xenografts. An ultrasound trigger was essential to achieve the selective effects of thMBs as without it, thMBs failed to extend intratumoral drug delivery or demonstrate enhanced tumor responses. Sensitive LC-MS/MS quantification of drugs and their metabolites demonstrated that thMBs extended drug exposure in tumors but limited exposure in healthy tissues, not exposed to ultrasound, by persistent encapsulation of drug prior to elimination. 89Zr PET radiotracing showed that the percentage injected dose in tumors achieved with thMBs was twice that of VEGFR2-targeted SN38 liposomes alone. Conclusions: thMBs provide a generic platform for the targeted, ultrasound-triggered delivery of cytotoxic drugs by enhancing tumor responses to low dose drug delivery via combined effects on circulation, tumor drug accumulation and exposure and altered metabolism in normal tissues.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Microbolhas/uso terapêutico , Ondas Ultrassônicas , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/patologia , Terapia Combinada/métodos , Feminino , Humanos , Irinotecano , Técnicas Analíticas Microfluídicas , Tomografia por Emissão de Pósitrons , Distribuição Tecidual/efeitos da radiação , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Biosens Bioelectron ; 153: 112030, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31989939

RESUMO

A novel peptide-based three-dimensional probe called "peptide matrix," inspired by the antibody paratope region, was fabricated on a surface plasmon resonance (SPR) sensor chip to enhance the sensitivity of detecting the explosive 2,4,6-trinitrotoluene (TNT). Although peptide aptamer is an attractive candidate for a molecular recognition probe because of its ease of synthesis and chemical stability, it still has difficulty in applying to highly sensitive (i.e. parts-per-billion (ppb) or sub-ppb level) detections. Thus, we developed the concept of peptide matrix structure, which is constructed by consecutive disulfide bond formation between a large number of peptide fragments. This robust three-dimensional structure displays multiple binding sites which can efficiently associate with each TNT molecule. The peptide matrix lowered the dissociation constant (KD) by two orders of magnitude compared to the linear peptide aptamer, estimating KD as 10.1 nM, which is the lowest concentration reported by using peptide-based TNT probe. Furthermore, the concentration limit of detection of peptide matrix modified SPR sensor was 0.62 ppb, and hence comparable to single-chain variable fragment (scFv)-based TNT sensors. To our knowledge, this is the first report demonstrating peptide matrix fabrication and its application for small explosive molecule detection. This peptide matrix-based approach, which has the advantage of simple synthesis and high sensitivity, will be applicable to many other small-molecule label-free detections.


Assuntos
Anticorpos Monoclonais/química , Aptâmeros de Peptídeos/química , Substâncias Explosivas/análise , Peptídeos/química , Ressonância de Plasmônio de Superfície/métodos , Trinitrotolueno/análise , Transportadores de Cassetes de Ligação de ATP , Sequência de Aminoácidos , Ligação Competitiva , Cisteína/química , Dissulfetos/química , Desenho de Equipamento , Limite de Detecção , Estrutura Molecular , Técnicas de Síntese em Fase Sólida , Propriedades de Superfície , Termodinâmica
5.
ACS Appl Bio Mater ; 3(11): 7840-7848, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35019524

RESUMO

Microbubbles (MBs) are widely used as contrast enhancement agents for ultrasound imaging and have the potential to enhance therapeutic delivery to diseases such as cancer. Yet, they are only stable in solution for a few hours to days after production, which limits their potential application. Freeze-drying provides long-term storage, ease of transport, and consistency in structure and composition, thereby facilitating their use in clinical settings. Therapeutic microbubbles (thMBs) consisting of MBs with attached therapeutic payload potentially face even greater issues for production, stability, and well-defined drug delivery. The ability to freeze-dry thMBs represents an important step for their translation to the clinic. Here, we show that it is possible to freeze-dry and reconstitute thMBs that consist of lipid-coated MBs with an attached liposomal payload. The thMBs were produced microfluidically, and the liposomes contained either calcein, as a model drug, or gemcitabine. The results show that drug-loaded thMBs can be freeze-dried and stored for at least 6 months. Upon reconstitution, they maintain their structural integrity and drug loading. Furthermore, we show that their in vivo echogenicity is maintained post-freeze-drying. Depending on the gas used in the original bubbles, we also demonstrate that the approach provides a method to exchange the gas core to allow the formulation of thMBs with different gases for combination therapies or improved drug efficacy. Importantly, this work provides an important route for the facile off-site production of thMBs that can be reformulated at the point of care.

6.
Nat Commun ; 10(1): 206, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643136

RESUMO

There is a significant drive to identify alternative materials that exhibit room temperature phosphorescence for technologies including bio-imaging, photodynamic therapy and organic light-emitting diodes. Ideally, these materials should be non-toxic and cheap, and it will be possible to control their photoluminescent properties. This was achieved here by embedding carbon nanodots within crystalline particles of alkaline earth carbonates, sulphates and oxalates. The resultant nanocomposites are luminescent and exhibit a bright, sub-second lifetime afterglow. Importantly, the excited state lifetimes, and steady-state and afterglow colours can all be systematically controlled by varying the cations and anions in the host inorganic phase, due to the influence of the cation size and material density on emissive and non-emissive electronic transitions. This simple strategy provides a flexible route for generating materials with specific, phosphorescent properties and is an exciting alternative to approaches relying on the synthesis of custom-made luminescent organic molecules.

7.
Nat Commun ; 9(1): 3125, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087338

RESUMO

Iron sulfur (Fe-S) phases have been implicated in the emergence of life on early Earth due to their catalytic role in the synthesis of prebiotic molecules. Similarly, Fe-S phases are currently of high interest in the development of green catalysts and energy storage. Here we report the synthesis and structure of a nanoparticulate phase (FeSnano) that is a necessary solid-phase precursor to the conventionally assumed initial precipitate in the iron sulfide system, mackinawite. The structure of FeSnano contains tetrahedral iron, which is compensated by monosulfide and polysulfide sulfur species. These together dramatically affect the stability and enhance the reactivity of FeSnano.


Assuntos
Compostos Ferrosos/química , Ferro/química , Sulfetos/química , Catálise , Temperatura Baixa , Análise de Fourier , Química Verde , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Análise Espectral Raman , Difração de Raios X
8.
Biotechnol J ; 13(12): e1800087, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30039923

RESUMO

Lipid tubules are of particular interest for many potential applications in nanotechnology. Among various lipid tubule fabrication techniques, the morphological regulation of membrane structure by proteins mimicking biological processes may provide the chances to form lipid tubes with highly tuned structures. Magnetotactic bacteria synthesize magnetosomes (a unique prokaryotic organelle comprising a magnetite crystal within a lipid envelope). MamY protein is previously identified as the magnetosome protein responsible for magnetosome vesicle formation and stabilization. Furthermore, MamY is shown in vitro liposome tubulation activity. In this study, the interaction of MamY and phospholipids is investigated by using a lipids-immobilized membrane strip and a peptide array. Here, the binding of MamY to the anionic phospholipid, cardiolipin, is found and enhanced liposome tubulation efficiency. The authors propose the interaction is responsible for recruiting and locating cardiolipin to elongate liposome in vitro. The authors also suggest a similar mechanism for the invagination site in magnetosomes vesicle formation, where the lipid itself contributes further to increasing the curvature. These findings are highly important to develop an effective biomimetic synthesis technique of lipid tubules and to elucidate the unique prokaryotic organelle formation in magnetotactic bacteria.


Assuntos
Proteínas de Bactérias/química , Cardiolipinas/química , Bactérias Gram-Negativas/genética , Lipossomos/química , Magnetossomos/química , Proteínas de Bactérias/genética , Biomimética , Bactérias Gram-Negativas/química
9.
Biochim Biophys Acta ; 1858(11): 2737-2744, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27480803

RESUMO

Determining the mechanism of action of antimicrobial peptides (AMPs) is critical if they are to be developed into the clinical setting. In recent years high resolution techniques such as atomic force microscopy (AFM) have increasingly been utilised to determine AMP mechanism of action on planar lipid bilayers and live bacteria. Here we present the biophysical characterisation of a prototypical AMP from the venom of the North African scorpion Scorpio maurus palmatus termed Smp24. Smp24 is an amphipathic helical peptide containing 24 residues with a charge of +3 and exhibits both antimicrobial and cytotoxic activity and we aim to elucidate the mechanism of action of this peptide on both membrane systems. Using AFM, quartz crystal microbalance-dissipation (QCM-D) and liposomal leakage assays the effect of Smp24 on prototypical synthetic prokaryotic (DOPG:DOPC) and eukaryotic (DOPE:DOPC) membranes has been determined. Our data points to a toroidal pore mechanism against the prokaryotic like membrane whilst the formation of hexagonal phase non-lamellar phase structures is seen in eukaryotic like membrane. Also, phase segregation is observed against the eukaryotic membrane and this study provides direct evidence of the same peptide having multiple mechanisms of action depending on the membrane lipid composition.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Bicamadas Lipídicas/química , Lipossomos/química , Venenos de Escorpião/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/síntese química , Mimetismo Molecular , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , Conformação Proteica em alfa-Hélice , Venenos de Escorpião/síntese química , Escorpiões/química , Eletricidade Estática
10.
Soft Matter ; 12(34): 7223-30, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27501364

RESUMO

Microbubbles are potential diagnostic and therapeutic agents. In vivo stability is important as the bubbles are required to survive multiple passages through the heart and lungs to allow targeting and delivery. Here we have systematically varied key parameters affecting microbubble lifetime to significantly increase in vivo stability. Whilst shell and core composition are found to have an important role in improving microbubble stability, we show that inclusion of small quantities of C6F14 in the microbubble bolus significantly improves microbubble lifetime. Our results indicate that C6F14 inserts into the lipid shell, decreasing surface tension to 19 mN m(-1), and increasing shell resistance, in addition to saturating the surrounding medium. Surface area isotherms suggest that C6F14 incorporates into the acyl chain region of the lipid at a high molar ratio, indicating ∼2 perfluorocarbon molecules per 5 lipid molecules. The resulting microbubble boluses exhibit a higher in vivo image intensity compared to commercial compositions, as well as longer lifetimes.

11.
Lab Chip ; 16(4): 679-87, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26689151

RESUMO

Micron-sized lipid-stabilised bubbles of heavy gas have been utilised as contrast agents for diagnostic ultrasound (US) imaging for many years. Typically bubbles between 1 and 8 µm in diameter are produced to enhance imaging in US by scattering sound waves more efficiently than surrounding tissue. A potential area of interest for Contrast Enhanced Ultrasound (CEUS) are bubbles with diameters <1 µm or 'nanobubbles.' As bubble diameter decreases, ultrasonic resonant frequency increases, which could lead to an improvement in resolution for high-frequency imaging applications when using nanobubbles. In addition, current US contrast agents are limited by their size to the vasculature in vivo. However, molecular-targeted nanobubbles could penetrate into the extra-vascular space of cancerous tissue providing contrast in regions inaccessible to traditional microbubbles. This paper reports a new microfluidic method for the generation of sub-micron sized lipid stabilised particles containing perfluorocarbon (PFC). The nanoparticles are produced in a unique atomisation-like flow regime at high production rates, in excess of 10(6) particles per s and at high concentration, typically >10(11) particles per mL. The average particle diameter appears to be around 100-200 nm. These particles, suspected of being a mix of liquid and gaseous C4F10 due to Laplace pressure, then phase convert into nanometer sized bubbles on the application of US. In vitro ultrasound characterisation from these nanoparticle populations showed strong backscattering compared to aqueous filled liposomes of a similar size. The nanoparticles were stable upon injection and gave excellent contrast enhancement when used for in vivo imaging, compared to microbubbles with an equivalent shell composition.


Assuntos
Meios de Contraste/química , Dispositivos Lab-On-A-Chip , Nanopartículas , Razão Sinal-Ruído , Ultrassonografia/métodos , Animais , Aorta/diagnóstico por imagem , Estabilidade de Medicamentos , Fluorocarbonos/química , Lipídeos/química , Camundongos , Tamanho da Partícula , Ultrassonografia/instrumentação
12.
Soft Matter ; 10(5): 694-700, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24652242

RESUMO

Microbubbles offer unique properties as combined carriers of therapeutic payloads and diagnostic agents. Here we report on the development of novel microbubble architectures that in addition to the usual lipid shell have an actin cytoskeletal cortex assembled on their exterior. We show, using atomic force microscopy that this biomimetic coating creates a thin mesh that allows tuning of the mechanical properties of microbubbles and that the nature of actin assembly is determined by the fluidity of the lipid layer. Further, we show that it is possible to attach payloads and targeting-ligands to the actin scaffold. Resistance to gas permeation showed that the additional actin layer reduces gas diffusion across the shell and thus increases bubble lifetime. This study demonstrates a one step method to creating more complex microbubble architectures, which would be capable of further modification and tuning through the inclusion of actin binding proteins.


Assuntos
Actinas/química , Lipídeos/química , Microbolhas , Difusão , Gases , Polimerização
13.
Biophys J ; 105(10): 2355-65, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24268147

RESUMO

We report on the use of supported lipid bilayers to reveal dynamics of actin polymerization from a nonpolymerizing subphase via cationic phospholipids. Using varying fractions of charged lipid, lipid mobility, and buffer conditions, we show that dynamics at the nanoscale can be used to control the self-assembly of these structures. In the case of fluid-phase lipid bilayers, the actin adsorbs to form a uniform two-dimensional layer with complete surface coverage whereas gel-phase bilayers induce a network of randomly oriented actin filaments, of lower coverage. Reducing the pH increased the polymerization rate, the number of nucleation events, and the total coverage of actin. A model of the adsorption/diffusion process is developed to provide a description of the experimental data and shows that, in the case of fluid-phase bilayers, polymerization arises equally due to the adsorption and diffusion of surface-bound monomers and the addition of monomers directly from the solution phase. In contrast, in the case of gel-phase bilayers, polymerization is dominated by the addition of monomers from solution. In both cases, the filaments are stable for long times even when the G-actin is removed from the supernatant-making this a practical approach for creating stable lipid-actin systems via self-assembly.


Assuntos
Actinas/química , Bicamadas Lipídicas/química , Multimerização Proteica , Adsorção , Animais , Membrana Celular/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Imagem Molecular , Estrutura Quaternária de Proteína , Coelhos
14.
Lab Chip ; 12(21): 4544-52, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22968592

RESUMO

Micron sized, lipid stabilized bubbles of gas are of interest as contrast agents for ultra-sound (US) imaging and increasingly as delivery vehicles for targeted, triggered, therapeutic delivery. Microfluidics provides a reproducible means for microbubble production and surface functionalisation. In this study, microbubbles are generated on chip using flow-focussing microfluidic devices that combine streams of gas and liquid through a nozzle a few microns wide and then subjecting the two phases to a downstream pressure drop. While microfluidics has successfully demonstrated the generation of monodisperse bubble populations, these approaches inherently produce low bubble counts. We introduce a new micro-spray flow regime that generates consistently high bubble concentrations that are more clinically relevant compared to traditional monodisperse bubble populations. Final bubble concentrations produced by the micro-spray regime were up to 10(10) bubbles mL(-1). The technique is shown to be highly reproducible and by using multiplexed chip arrays, the time taken to produce one millilitre of sample containing 10(10) bubbles mL(-1) was ∼10 min. Further, we also demonstrate that it is possible to attach liposomes, loaded with quantum dots (QDs) or fluorescein, in a single step during MBs formation.


Assuntos
Gases/química , Lipossomos/química , Técnicas Analíticas Microfluídicas/métodos , Fluoresceína/química , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Moleculares , Pontos Quânticos , Propriedades de Superfície
15.
Biochem J ; 439(1): 67-77, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21702743

RESUMO

Aß (amyloid-ß peptide) assembles to form amyloid fibres that accumulate in senile plaques associated with AD (Alzheimer's disease). The major constituent, a 42-residue Aß, has the propensity to assemble and form soluble and potentially cytotoxic oligomers, as well as ordered stable amyloid fibres. It is widely believed that the cytotoxicity is a result of the formation of transient soluble oligomers. This observed toxicity may be associated with the ability of oligomers to associate with and cause permeation of lipid membranes. In the present study, we have investigated the ability of oligomeric and fibrillar Aß42 to simultaneously associate with and affect the integrity of biomimetic membranes in vitro. Surface plasmon field-enhanced fluorescence spectroscopy reveals that the binding of the freshly dissolved oligomeric 42-residue peptide binds with a two-step association with the lipid bilayer, and causes disruption of the membrane resulting in leakage from vesicles. In contrast, fibrils bind with a 2-fold reduced avidity, and their addition results in approximately 2-fold less fluorophore leakage compared with oligomeric Aß. Binding of the oligomers may be, in part, mediated by the GM1 ganglioside receptors as there is a 1.8-fold increase in oligomeric Aß binding and a 2-fold increase in permeation compared with when GM1 is not present. Atomic force microscopy reveals the formation of defects and holes in response to oligomeric Aß, but not preformed fibrillar Aß. The results of the present study indicate that significant membrane disruption arises from association of low-molecular-mass Aß and this may be mediated by mechanical damage to the membranes by Aß aggregation. This membrane disruption may play a key role in the mechanism of Aß-related cell toxicity in AD.


Assuntos
Peptídeos beta-Amiloides/química , Bicamadas Lipídicas/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Ligação Proteica , Espectrometria de Fluorescência
16.
J Am Chem Soc ; 133(17): 6521-4, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21476549

RESUMO

Membrane proteins are key components of the plasma membrane and are responsible for control of chemical ionic gradients, metabolite and nutrient transfer, and signal transduction between the interior of cells and the external environment. Of the genes in the human genome, 30% code for membrane proteins (Krogh et al. J. Mol. Biol.2001, 305, 567). Furthermore, many FDA-approved drugs target such proteins (Overington et al. Nat. Rev. Drug Discovery 2006, 5, 993). However, the structure-function relationships of these are notably sparse because of difficulties in their purification and handling outside of their membranous environment. Methods that permit the manipulation of membrane components while they are still in the membrane would find widespread application in separation, purification, and eventual structure-function determination of these species (Poo et al. Nature 1977, 265, 602). Here we show that asymmetrically patterned supported lipid bilayers in combination with AC electric fields can lead to efficient manipulation of charged components. We demonstrate the concentration and trapping of such components through the use of a "nested trap" and show that this method is capable of yielding an approximately 30-fold increase in the average protein concentration. Upon removal of the field, the material remains trapped for several hours as a result of topographically restricted diffusion. Our results indicate that this method can be used for concentrating and trapping charged membrane components while they are still within their membranous environment. We anticipate that our approach could find widespread application in the manipulation and study of membrane proteins.


Assuntos
Proteínas de Membrana/isolamento & purificação , Membrana Celular/química , Eletricidade , Bicamadas Lipídicas/química
17.
Chemphyschem ; 11(10): 2191-8, 2010 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-20512836

RESUMO

Tethered bilayer lipid membranes (tBLM) are formed on 1) pure tether lipid triethyleneoxythiol cholesterol (EO(3)C) or on 2) mixed self-assembled monolayers (SAMs) of EO(3)C and 6-mercaptohexanol (6MH). While EO(3)C is required to form a tBLM with high resistivity, 6MH dilutes the cholesterol content in the lower leaflet of the bilayer forming ionic reservoirs required for submembrane hydration. Here we show that these ionic reservoirs are required for ion transport through gramicidin or valinomycin, most likely due to the thermodynamic requirements of ions to be solvated once transported through the membrane. Unexpectedly, electrochemical impedance spectroscopy (EIS) shows an increase of capacitance upon addition of gramicidin, while addition of valinomycin decreases the membrane resistance in the presence of K(+) ions. We hypothesise that this is due to previously reported phase separation of EO(3)C and 6MH on the surface. This results in ionic reservoirs on the nanometre scale, which are not fully accounted for by the equivalent circuits used to describe the system.


Assuntos
Colesterol/química , Ionóforos/farmacologia , Bicamadas Lipídicas/química , Ouro/química , Gramicidina/química , Gramicidina/farmacologia , Transporte de Íons , Ionóforos/química , Bicamadas Lipídicas/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Ressonância de Plasmônio de Superfície , Valinomicina/química , Valinomicina/farmacologia
20.
Langmuir ; 24(13): 6827-36, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18522444

RESUMO

Preferential binding of F-actin to lipid bilayers containing ponticulin was investigated on both planar supported bilayers and on a cholesterol-based tethering system. The transmembrane protein ponticulin in Dictyostelium discoideum is known to provide a direct link between the actin cytoskeleton and the cell membrane ( Wuestehube, L. J. ; Luna, E. J. J. Cell Biol. 1987, 105, 1741- 1751 ). Purification of ponticulin has allowed an in vitro model of the F-actin cytoskeletal scaffold system to be formed and investigated by AFM, epi-fluorescence microscopy, surface plasmon resonance (SPR), and quartz crystal microbalance with dissipation (QCM-D). Single filament features of F-actin bound to the ponticulin containing lipid bilayer are shown by AFM to have a pitch of 37.3 +/- 1.1 nm and a filament height of 7.0 +/- 1.6 nm. The complementary techniques of QCM-D and SPR were used to obtain dissociation constants for the interaction of F-actin with ponticulin containing bilayers, giving 10.5 +/- 1.7 microM for a physisorbed bilayer and 10.8 +/- 3.6 microM for a tethered bilayer, respectively.


Assuntos
Actinas/química , Citoesqueleto/química , Bicamadas Lipídicas/química , Fosfolipídeos/química , Animais , Proteínas de Transporte/química , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/metabolismo , Dictyostelium/química , Eletroforese em Gel de Poliacrilamida , Cinética , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/isolamento & purificação , Proteínas dos Microfilamentos/metabolismo , Microscopia de Força Atômica , Fosfatidilcolinas/química , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA