Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell Rep ; 43(3): 113931, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38492223

RESUMO

In adult mammals, injured retinal ganglion cells (RGCs) fail to spontaneously regrow severed axons, resulting in permanent visual deficits. Robust axon growth, however, is observed after intra-ocular injection of particulate ß-glucan isolated from yeast. Blood-borne myeloid cells rapidly respond to ß-glucan, releasing numerous pro-regenerative factors. Unfortunately, the pro-regenerative effects are undermined by retinal damage inflicted by an overactive immune system. Here, we demonstrate that protection of the inflamed vasculature promotes immune-mediated RGC regeneration. In the absence of microglia, leakiness of the blood-retina barrier increases, pro-inflammatory neutrophils are elevated, and RGC regeneration is reduced. Functional ablation of the complement receptor 3 (CD11b/integrin-αM), but not the complement components C1q-/- or C3-/-, reduces ocular inflammation, protects the blood-retina barrier, and enhances RGC regeneration. Selective targeting of neutrophils with anti-Ly6G does not increase axogenic neutrophils but protects the blood-retina barrier and enhances RGC regeneration. Together, these findings reveal that protection of the inflamed vasculature promotes neuronal regeneration.


Assuntos
Traumatismos do Nervo Óptico , beta-Glucanas , Animais , Neutrófilos , Regeneração Nervosa/fisiologia , Células Ganglionares da Retina/fisiologia , Axônios/fisiologia , Mamíferos
2.
iScience ; 27(2): 108805, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38299111

RESUMO

A group of keratin intermediate filament genes, the type II KRT6A-C and type I KRT16 and KRT17, are deemed stress responsive as they are induced in keratinocytes of surface epithelia in response to environmental stressors, in skin disorders (e.g., psoriasis) and in carcinomas. Monitoring stress keratins is widely used to identify keratinocytes in an activated state. Here, we analyze single-cell transcriptomic data from healthy and diseased human skin to explore the properties of stress keratins. Relative to keratins occurring in healthy skin, stress-induced keratins are expressed at lower levels and show lesser type I-type II pairwise regulation. Stress keratins do not "replace" the keratins expressed during normal differentiation nor reflect cellular proliferation. Instead, stress keratins are consistently co-regulated with genes with roles in differentiation, inflammation, and/or activation of innate immunity at the single-cell level. These findings provide a roadmap toward explaining the broad diversity and contextual regulation of keratins.

3.
bioRxiv ; 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37873256

RESUMO

Neutrophils contribute to the pathogenesis of chronic inflammatory skin diseases. Little is known about the source and identity of the signals mediating their recruitment in inflamed skin. We used the phorbol ester TPA and UVB, alone or in combination, to induce sterile inflammation in mouse skin and assess whether keratinocyte-derived signals impact neutrophil recruitment. A single TPA treatment results in a neutrophil influx in the dermis that peaks at 12h and resolves within 24h. A second TPA treatment or a UVB challenge, when applied at 24h but not 48h later, accelerates, amplifies, and prolongs neutrophil infiltration. This transient amplification response (TAR) is mediated by local signals in inflamed skin, can be recapitulated in ex vivo culture, and involves the K17-dependent sustainment of protein kinase Cα (PKCα) activity and release of neutrophil chemoattractants by stressed keratinocytes. We show that K17 binds RACK1, a scaffold essential for PKCα activity. Finally, analyses of RNAseq data reveal the presence of a transcriptomic signature consistent with TAR and PKCα activation in chronic inflammatory skin diseases. These findings uncover a novel, transient, and keratin-dependent mechanism that amplifies neutrophil recruitment to the skin under stress, with direct implications for inflammatory skin disorders.

4.
PLoS One ; 18(9): e0290886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682817

RESUMO

Tumor-associated neutrophils are found in many types of cancer and are often reported to contribute to negative outcomes. The presence of transforming growth factor-beta (TGF-ß) in the tumor microenvironment reportedly contributes to the skewing of neutrophils to a more pro-tumor phenotype. The effects of TGF-ß on neutrophil signaling and migration are, however, unclear. We sought to characterize TGF-ß signaling in both primary human neutrophils and the neutrophil-like cell line HL-60 and determine whether it directly induces neutrophil migration. We found that TGF-ß1 does not induce neutrophil chemotaxis in transwell or underagarose migration assays. TGF-ß1 does activate canonical signaling through SMAD3 and noncanonical signaling through ERK1/2 in neutrophils in a time- and dose-dependent manner. Additionally, TGF-ß1 present in the tumor-conditioned media (TCM) of invasive breast cancer cells results in SMAD3 activation. We discovered that TCM induces neutrophils to secrete leukotriene B4 (LTB4), which is a lipid mediator important for amplifying the range of neutrophil recruitment. However, TGF-ß1 alone does not induce secretion of LTB4. RNA-sequencing revealed that TGF-ß1 and TCM alter gene expression in HL-60 cells, including the mRNA levels of the pro-tumor oncostatin M (OSM) and vascular endothelial growth factor A (VEGFA). These new insights into the role and impact of TGF-ß1 on neutrophil signaling, migration, and gene expression have significant implications in the understanding of the changes in neutrophils that occur in the tumor microenvironment.


Assuntos
Neutrófilos , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/farmacologia , Fator A de Crescimento do Endotélio Vascular , Leucotrieno B4 , Fator de Crescimento Transformador beta , Meios de Cultivo Condicionados , Células HL-60 , Expressão Gênica
5.
Elife ; 112022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36515985

RESUMO

Upon trauma, the adult murine peripheral nervous system (PNS) displays a remarkable degree of spontaneous anatomical and functional regeneration. To explore extrinsic mechanisms of neural repair, we carried out single-cell analysis of naïve mouse sciatic nerve, peripheral blood mononuclear cells, and crushed sciatic nerves at 1 day, 3 days, and 7 days following injury. During the first week, monocytes and macrophages (Mo/Mac) rapidly accumulate in the injured nerve and undergo extensive metabolic reprogramming. Proinflammatory Mo/Mac with a high glycolytic flux dominate the early injury response and rapidly give way to inflammation resolving Mac, programmed toward oxidative phosphorylation. Nerve crush injury causes partial leakiness of the blood-nerve barrier, proliferation of endoneurial and perineurial stromal cells, and entry of opsonizing serum proteins. Micro-dissection of the nerve injury site and distal nerve, followed by single-cell RNA-sequencing, identified distinct immune compartments, triggered by mechanical nerve wounding and Wallerian degeneration, respectively. This finding was independently confirmed with Sarm1-/- mice, in which Wallerian degeneration is greatly delayed. Experiments with chimeric mice showed that wildtype immune cells readily enter the injury site in Sarm1-/- mice, but are sparse in the distal nerve, except for Mo. We used CellChat to explore intercellular communications in the naïve and injured PNS and report on hundreds of ligand-receptor interactions. Our longitudinal analysis represents a new resource for neural tissue regeneration, reveals location- specific immune microenvironments, and reports on large intercellular communication networks. To facilitate mining of scRNAseq datasets, we generated the injured sciatic nerve atlas (iSNAT): https://cdb-rshiny.med.umich.edu/Giger_iSNAT/.


Assuntos
Traumatismos dos Nervos Periféricos , Degeneração Walleriana , Camundongos , Animais , Degeneração Walleriana/metabolismo , Degeneração Walleriana/patologia , Leucócitos Mononucleares , Nervo Isquiático/metabolismo , Degeneração Neural , Compressão Nervosa , Traumatismos dos Nervos Periféricos/metabolismo , Regeneração Nervosa , Proteínas do Citoesqueleto/metabolismo , Proteínas do Domínio Armadillo/metabolismo
6.
Shock ; 55(1): 110-120, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32925172

RESUMO

INTRODUCTION: We previously showed that the addition of valproic acid (VPA), a histone deacetylase inhibitor, to fresh frozen plasma (FFP) resuscitation attenuates brain lesion size and swelling following traumatic brain injury (TBI) and hemorrhagic shock (HS). The goal of this study was to use computational biology tools to investigate the effects of FFP+VPA on the brain transcriptome following TBI+HS. METHODS: Swine underwent TBI+HS, kept in shock for 2 h, and resuscitated with FFP or FFP + VPA (n = 5/group). After 6 h of observation, brain RNA was isolated and gene expression was analyzed using a microarray. iPathwayGuide, Gene Ontology (GO), Gene-Set Enrichment Analysis, and Enrichment Mapping were used to identify significantly impacted genes and transcriptomic networks. RESULTS: Eight hundred differentially expressed (DE) genes were identified out of a total of 9,118 genes. Upregulated genes were involved in promotion of cell division, proliferation, and survival, while downregulated genes were involved in autophagy, cell motility, neurodegenerative diseases, tumor suppression, and cell cycle arrest. Seven hundred ninety-one GO terms were significantly enriched. A few major transcription factors, such as TP53, NFKB3, and NEUROD1, were responsible for modulating hundreds of other DE genes. Network analysis revealed attenuation of interconnected genes involved in inflammation and tumor suppression, and an upregulation of those involved in cell proliferation and differentiation. CONCLUSION: Overall, these results suggest that VPA treatment creates an environment that favors production of new neurons, removal of damaged cells, and attenuation of inflammation, which could explain its previously observed neuroprotective effects.


Assuntos
Lesões Encefálicas Traumáticas/prevenção & controle , Inibidores de Histona Desacetilases/uso terapêutico , Plasma , Choque Hemorrágico/prevenção & controle , Transcriptoma/efeitos dos fármacos , Ácido Valproico/uso terapêutico , Animais , Transfusão de Componentes Sanguíneos , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Feminino , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patologia , Suínos
7.
J Am Soc Nephrol ; 31(6): 1212-1225, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32381599

RESUMO

BACKGROUND: As the glomerular filtrate passes through the nephron and into the renal medulla, electrolytes, water, and urea are reabsorbed through the concerted actions of solute carrier channels and aquaporins at various positions along the nephron and in the outer and inner medulla. Proliferating stem cells expressing the nuclear transcription factor Pax2 give rise to renal epithelial cells. Pax2 expression ends once the epithelial cells differentiate into mature proximal and distal tubules, whereas expression of the related Pax8 protein continues. The collecting tubules and renal medulla are derived from Pax2-positive ureteric bud epithelia that continue to express Pax2 and Pax8 in adult kidneys. Despite the crucial role of Pax2 in renal development, functions for Pax2 or Pax8 in adult renal epithelia have not been established. METHODS: To examine the roles of Pax2 and Pax8 in the adult mouse kidney, we deleted either Pax2, Pax8, or both genes in adult mice and examined the resulting phenotypes and changes in gene expression patterns. We also explored the mechanism of Pax8-mediated activation of potential target genes in inner medullary collecting duct cells. RESULTS: Mice with induced deletions of both Pax2 and Pax8 exhibit severe polyuria that can be attributed to significant changes in the expression of solute carriers, such as the urea transporters encoded by Slc14a2, as well as aquaporins within the inner and outer medulla. Furthermore, Pax8 expression is induced by high-salt levels in collecting duct cells and activates the Slc14a2 gene by recruiting a histone methyltransferase complex to the promoter. CONCLUSIONS: These data reveal novel functions for Pax proteins in adult renal epithelia that are essential for retaining water and concentrating urine.


Assuntos
Aquaporinas/fisiologia , Capacidade de Concentração Renal/fisiologia , Rim/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Fator de Transcrição PAX2/fisiologia , Fator de Transcrição PAX8/fisiologia , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Osmorregulação , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX8/genética , Transportadores de Ureia
8.
J Immunol ; 199(5): 1865-1874, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28733487

RESUMO

Macrophages are critical immune cells for the clearance of microbial pathogens and cellular debris from peripheral tissues. Macrophage inflammatory responses are governed by gene expression patterns, and these patterns are often subject to epigenetic control. Chromatin modifications, such as histone methylation, regulate gene accessibility in macrophages, and macrophage polarization is governed in part by the expression and function of chromatin-modifying enzymes. The histone methyltransferase mixed-lineage leukemia 1 (MLL1) preferentially modifies lysine residue 4 on the unstructured protein tail of histone H3. MLL1 expression and function have been shown to be governed by signal transduction pathways that are activated by inflammatory stimuli, such as NF-κB. Therefore, we sought to investigate the role of MLL1 in mediating macrophage inflammatory responses. Bone marrow-derived macrophages from mice with a targeted MLL1 gene knockout (Lys2-Cre+/- MLL1fx/fx) exhibited decreased proinflammatory gene expression with concurrent decreases in activating histone methylation. However, MLL1-deficient macrophages also exhibited increased phagocytic and bacterial killing activity in vitro. RNA profiling of MLL1-knockout macrophages identified numerous genes involved with inflammatory responses whose expression was altered in response to TLR ligands or proinflammatory cytokines, including STAT4. STAT4-dependent cytokines, such as type I IFNs were able to drive MLL1 expression in macrophages, and MLL1-knockout macrophages exhibited decreased activating histone methylation in the STAT4 promoter. These results implicate an important role for MLL1-dependent epigenetic regulation of macrophage antimicrobial functions.


Assuntos
Epigênese Genética/imunologia , Histona-Lisina N-Metiltransferase/metabolismo , Infecções/imunologia , Macrófagos/imunologia , Proteína de Leucina Linfoide-Mieloide/metabolismo , Fator de Transcrição STAT4/metabolismo , Animais , Bacteriólise , Células Cultivadas , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/genética , NF-kappa B/metabolismo , Fator de Transcrição STAT4/genética , Transdução de Sinais , Transcriptoma
9.
Leuk Lymphoma ; 58(9): 1-14, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28084835

RESUMO

Chronic myeloid leukemia (CML) is characterized by the chromosomal translocation 9;22, known as the Philadelphia chromosome (Ph), which produces the BCR-ABL fusion tyrosine kinase. Although well-managed by BCR-ABL tyrosine kinase inhibitors (TKIs), treatment fails to eliminate Ph + primitive progenitors, and cessation of therapy frequently results in relapse. The p53 protein is an important regulator of cell cycle and apoptosis. The small molecules MI-219 target the interaction between p53 and its negative regulator HDM2, leading to its stabilization and activation. We show that treatment with MI-219 reduced the number of CML cells in both in vitro and in vivo settings but not that of normal primitive progenitors, and activated different gene signatures in CML potentially explaining the differential impact of this agent on each population. Our data suggest that a p53-activating agent may be an effective approach in the management and potential operational cure of CML.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Análise por Conglomerados , Ensaio de Unidades Formadoras de Colônias , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Compostos de Espiro/farmacologia , Compostos de Espiro/uso terapêutico , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Microarrays (Basel) ; 5(2)2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27600078

RESUMO

Metastasis is the major cause of cancer deaths and control of gene transcription has emerged as a critical contributing factor. RhoA- and RhoC-induced gene transcription via the actin-regulated transcriptional co-activator megakaryocytic leukemia (MKL) and serum response factor (SRF) drive metastasis in breast cancer and melanoma. We recently identified a compound, CCG-1423, which blocks Rho/MKL/SRF-mediated transcription and inhibits PC-3 prostate cancer cell invasion. Here, we undertook a genome-wide expression study in PC-3 cells to explore the mechanism and function of this compound. There was significant overlap in the genes modulated by CCG-1423 and Latrunculin B (Lat B), which blocks the Rho/MKL/SRF pathway by preventing actin polymerization. In contrast, the general transcription inhibitor 5,6-dichloro-1-ß-d-ribofuranosyl-1H-benzimidazole (DRB) showed a markedly different pattern. Effects of CCG-1423 and Lat B on gene expression correlated with literature studies of MKL knock-down. Gene sets involved in DNA synthesis and repair, G1/S transition, and apoptosis were modulated by CCG-1423. It also upregulated genes involved in endoplasmic reticulum stress. Targets of the known Rho target transcription factor family E2F and genes related to melanoma progression and metastasis were strongly suppressed by CCG-1423. These results confirm the ability of our compound to inhibit expression of numerous Rho/MKL-dependent genes and show effects on stress pathways as well. This suggests a novel approach to targeting aggressive cancers and metastasis.

11.
J Neurotrauma ; 33(16): 1514-21, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-26905959

RESUMO

Traumatic brain injury and hemorrhagic shock (TBI+HS) elicit a complex inflammatory response that contributes to secondary brain injury. There is currently no proven pharmacologic treatment for TBI+HS, but modulation of the epigenome has been shown to be a promising strategy. The aim of this study was to investigate whether valproic acid (VPA), a histone deacetylase inhibitor, modulates the expression of cerebral inflammatory gene profiles in a large animal model of TBI+HS. Ten Yorkshire swine were subjected to computer-controlled TBI+HS (40% blood volume). After 2 h of shock, animals were resuscitated with Hextend (HEX) or HEX+VPA (300 mg/kg, n = 5/group). Six hours after resuscitation, brains were harvested, RNA was isolated, and gene expression profiles were measured using a porcine microarray. Ingenuity Pathway Analysis® (IPA), gene ontology (GO), Parametric Gene Set Enrichment Analysis (PGSEA), and DAVID (Database for Annotation, Visualization, and Integrated Discovery) were used for pathway analysis. Key microarray findings were verified using real-time polymerase chain reaction (PCR). IPA analysis revealed that VPA significantly down-regulated the complement system (p < 0.001), natural killer cell communication (p < 0.001), and dendritic cell maturation (p < 0.001). DAVID analysis indicated that a cluster of inflammatory pathways held the highest rank and gene enrichment score. Real-time PCR data confirmed that VPA significantly down-expressed genes that ultimately regulate nuclear factor-kB (NF-kB)-mediated production of cytokines, such as TYROBP, TREM2, CCR1, and IL-1ß. This high-throughput analysis of cerebral gene expression shows that addition of VPA to the resuscitation protocol significantly modulates the expression of inflammatory pathways in a clinically realistic model of TBI+HS.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Substitutos do Plasma/farmacologia , Ressuscitação , Choque Hemorrágico/metabolismo , Transcriptoma/efeitos dos fármacos , Ácido Valproico/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Citocinas/efeitos dos fármacos , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Feminino , Derivados de Hidroxietil Amido/administração & dosagem , Derivados de Hidroxietil Amido/farmacologia , Substitutos do Plasma/administração & dosagem , Choque Hemorrágico/tratamento farmacológico , Suínos , Ácido Valproico/administração & dosagem
12.
J Trauma Acute Care Surg ; 77(6): 906-12; discussion 912, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25051383

RESUMO

BACKGROUND: We have previously shown that addition of valproic acid (VPA; a histone deacetylase inhibitor) to hetastarch (Hextend [HEX]) resuscitation significantly decreases lesion size in a swine model of traumatic brain injury (TBI) and hemorrhagic shock (HS). However, the precise mechanisms have not been well defined. As VPA is a transcriptional modulator, the aim of this study was to investigate its effect on brain gene expression profiles. METHODS: Swine were subjected to controlled TBI and HS (40% blood volume), kept in shock for 2 hours, and resuscitated with HEX or HEX + VPA (n = 5 per group). Following 6 hours of observation, brain RNA was isolated, and gene expression profiles were measured using a Porcine Gene ST 1.1 microarray (Affymetrix, Santa Clara, CA). Pathway analysis was done using network analysis tools Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene Set Enrichment Analysis. Real-time polymerase chain reaction was used to verify the key microarray findings. RESULTS: A total of 1,668 probe sets mapping to 370 known genes were differentially expressed between the HEX and HEX + VPA groups. Expression of apoptotic genes differed between groups, and biologic function analysis predicted a significant downregulation of apoptosis (p = 1.29 × 10), cell death (p = 8.46 × 10), and necrosis (p = 9.07 × 10). Pathway analysis indicated a significant modulation of pathways involved in cell signaling, dendritic cell response, and the complement system. CONCLUSION: This is the first high-throughput analysis of cerebral gene profiling following TBI + HS. It shows that treatment with VPA significantly alters early transcription of pathways related to cell survival, which may explain its neuroprotective effects.


Assuntos
Química Encefálica/efeitos dos fármacos , Lesões Encefálicas/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Ressuscitação , Choque Hemorrágico/tratamento farmacológico , Transcriptoma/efeitos dos fármacos , Ácido Valproico/uso terapêutico , Animais , Lesões Encefálicas/metabolismo , Modelos Animais de Doenças , Feminino , Derivados de Hidroxietil Amido/uso terapêutico , Substitutos do Plasma/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Ressuscitação/métodos , Choque Hemorrágico/metabolismo , Suínos
13.
PLoS Genet ; 9(12): e1003967, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339789

RESUMO

Mouse early transposon insertions are responsible for ~10% of spontaneous mutant phenotypes. We previously reported the phenotypes and genetic mapping of Polypodia, (Ppd), a spontaneous, X-linked dominant mutation with profound effects on body plan morphogenesis. Our new data shows that mutant mice are not born in expected Mendelian ratios secondary to loss after E9.5. In addition, we refined the Ppd genetic interval and discovered a novel ETnII-ß early transposon insertion between the genes for Dusp9 and Pnck. The ETn inserted 1.6 kb downstream and antisense to Dusp9 and does not disrupt polyadenylation or splicing of either gene. Knock-in mice engineered to carry the ETn display Ppd characteristic ectopic caudal limb phenotypes, showing that the ETn insertion is the Ppd molecular lesion. Early transposons are actively expressed in the early blastocyst. To explore the consequences of the ETn on the genomic landscape at an early stage of development, we compared interval gene expression between wild-type and mutant ES cells. Mutant ES cell expression analysis revealed marked upregulation of Dusp9 mRNA and protein expression. Evaluation of the 5' LTR CpG methylation state in adult mice revealed no correlation with the occurrence or severity of Ppd phenotypes at birth. Thus, the broad range of phenotypes observed in this mutant is secondary to a novel intergenic ETn insertion whose effects include dysregulation of nearby interval gene expression at early stages of development.


Assuntos
Elementos de DNA Transponíveis/genética , Genes Ligados ao Cromossomo X , Mutagênese Insercional/genética , Splicing de RNA/genética , Animais , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Mapeamento Cromossômico , Fosfatases de Especificidade Dupla/genética , Regulação da Expressão Gênica , Genes Dominantes , Camundongos , Fenótipo
14.
J Invest Dermatol ; 133(4): 936-45, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23223137

RESUMO

Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine tumor with high mortality rates. Merkel cell polyomavirus (MCPyV), identified in the majority of MCCs, may drive tumorigenesis via viral T antigens. However, the mechanisms underlying pathogenesis in MCPyV-negative MCCs remain poorly understood. To nominate genes contributing to the pathogenesis of MCPyV-negative MCCs, we performed DNA microarray analysis on 30 MCCs. The MCPyV status of MCCs was determined by PCR for viral DNA and RNA. A total of 1,593 probe sets were differentially expressed between MCPyV-negative and MCPyV-positive MCCs, with significant differential expression defined as at least a 2-fold change in either direction and a P-value 0.05. MCPyV-negative tumors showed decreased RB1 expression, whereas MCPyV-positive tumors were enriched for immune response genes. Validation studies included immunohistochemistry demonstration of decreased RB protein expression in MCPyV-negative tumors and increased peritumoral CD8+ T lymphocytes surrounding MCPyV-positive tumors. In conclusion, our data suggest that loss of RB1 expression may have an important role in the tumorigenesis of MCPyV-negative MCCs. Functional and clinical validation studies are needed to determine whether this tumor-suppressor pathway represents an avenue for targeted therapy.


Assuntos
Carcinoma de Célula de Merkel/genética , Poliomavírus das Células de Merkel/genética , Infecções por Polyomavirus/genética , Neoplasias Cutâneas/genética , Transcriptoma , Infecções Tumorais por Vírus/genética , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Célula de Merkel/mortalidade , Carcinoma de Célula de Merkel/virologia , Carcinoma de Células Escamosas/genética , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Incidência , Leucemia Linfocítica Crônica de Células B/genética , Linfócitos/fisiologia , Masculino , Pessoa de Meia-Idade , Neoplasia de Células Basais/genética , Infecções por Polyomavirus/mortalidade , Prevalência , Proteína do Retinoblastoma/genética , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/virologia , Infecções Tumorais por Vírus/mortalidade
15.
PLoS One ; 5(12): e14199, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21152033

RESUMO

Peroxisome proliferator-activated receptor-γ (PPARγ) is a master transcriptional regulator of adipogenesis. Hence, the identification of PPARγ coactivators should help reveal mechanisms controlling gene expression in adipose tissue development and physiology. We show that the non-coding RNA, Steroid receptor RNA Activator (SRA), associates with PPARγ and coactivates PPARγ-dependent reporter gene expression. Overexpression of SRA in ST2 mesenchymal precursor cells promotes their differentiation into adipocytes. Conversely, knockdown of endogenous SRA inhibits 3T3-L1 preadipocyte differentiation. Microarray analysis reveals hundreds of SRA-responsive genes in adipocytes, including genes involved in the cell cycle, and insulin and TNFα signaling pathways. Some functions of SRA may involve mechanisms other than coactivation of PPARγ. SRA in adipocytes increases both glucose uptake and phosphorylation of Akt and FOXO1 in response to insulin. SRA promotes S-phase entry during mitotic clonal expansion, decreases expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, and increases phosphorylation of Cdk1/Cdc2. SRA also inhibits the expression of adipocyte-related inflammatory genes and TNFα-induced phosphorylation of c-Jun NH(2)-terminal kinase. In conclusion, SRA enhances adipogenesis and adipocyte function through multiple pathways.


Assuntos
PPAR gama/metabolismo , RNA não Traduzido/genética , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia , Animais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inativação Gênica , Glucose/metabolismo , Glutationa Transferase/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Longo não Codificante , RNA não Traduzido/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA