Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(9): e10515, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37780535

RESUMO

Age-, region-, and year-specific estimates of reproduction are needed for monitoring wildlife populations during periods of ecosystem change. Population dynamics of Steller sea lions (Eumetopias jubatus) in Southeast Alaska varied regionally (with high population growth and survival in the north vs. the south) and annually (with reduced adult female survival observed following a severe marine heatwave event), but reproductive performance is currently unknown. We used mark-resighting data from 1006 Steller sea lion females marked as pups at ~3 weeks of age from 1994 to 1995 and from 2001 to 2005 and resighted from 2002 to 2019 (to a maximum age of 25) to examine age-, region-, and year-specific reproduction. In the north versus the south, age of first reproduction was earlier (beginning at age 4 vs. age 5, respectively) but annual birth probabilities of parous females were reduced by 0.05. In an average year pre-heatwave, the proportion of females with pup at the end of the pupping season peaked at ages 12-13 with ~0.60/0.65 (north/south) with pup, ~0.30/0.25 with juvenile, and ~0.10 (both regions) without a dependent. In both regions, reproductive senescence was gradual after age 12: ~0.40, 0.40, and 0.20 of females were in these reproductive states, respectively, by age 20. Correcting for neonatal mortality, true birth probabilities at peak ages were 0.66/0.72 (north/south). No cost of reproduction on female survival was detected, but pup production remained lower (-0.06) after the heatwave event, which if sustained could result in population decline in the south. Reduced pup production and greater retention of juveniles during periods of poor prey conditions may be an important strategy for Steller sea lions in Southeast Alaska, where fine-tuning reproduction based on nutritional status may improve the lifetime probability of producing pups under good conditions in a variable and less productive environment.

2.
Ecology ; 103(10): e3473, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270790

RESUMO

Ecologists and conservation biologists increasingly rely on spatial capture-recapture (SCR) and movement modeling to study animal populations. Historically, SCR has focused on population-level processes (e.g., vital rates, abundance, density, and distribution), whereas animal movement modeling has focused on the behavior of individuals (e.g., activity budgets, resource selection, migration). Even though animal movement is clearly a driver of population-level patterns and dynamics, technical and conceptual developments to date have not forged a firm link between the two fields. Instead, movement modeling has typically focused on the individual level without providing a coherent scaling from individual- to population-level processes, whereas SCR has typically focused on the population level while greatly simplifying the movement processes that give rise to the observations underlying these models. In our view, the integration of SCR and animal movement modeling has tremendous potential for allowing ecologists to scale up from individuals to populations and advancing the types of inferences that can be made at the intersection of population, movement, and landscape ecology. Properly accounting for complex animal movement processes can also potentially reduce bias in estimators of population-level parameters, thereby improving inferences that are critical for species conservation and management. This introductory article to the Special Feature reviews recent advances in SCR and animal movement modeling, establishes a common notation, highlights potential advantages of linking individual-level (Lagrangian) movements to population-level (Eulerian) processes, and outlines a general conceptual framework for the integration of movement and SCR models. We then identify important avenues for future research, including key challenges and potential pitfalls in the developments and applications that lie ahead.


Assuntos
Ecologia , Movimento , Animais , Densidade Demográfica
3.
Ecol Evol ; 11(2): 714-734, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33520160

RESUMO

The duration of offspring care is critical to female fitness and population resilience by allowing flexibility in life-history strategies in a variable environment. Yet, for many mammals capable of extended periods of maternal care, estimates of the duration of offspring dependency are not available and the relative importance of flexibility of this trait on fitness and population viability has rarely been examined. We used data from 4,447 Steller sea lions Eumetopias jubatus from the Gulf of Alaska and multistate hidden Markov mark-recapture models to estimate age-specific weaning probabilities. Maternal care beyond age 1 was common: Weaning was later for animals from Southeast Alaska (SEAK) and Prince William Sound (PWS, weaning probabilities: 0.536-0.648/0.784-0.873 by age 1/2) compared with animals born to the west (0.714-0.855/0.798-0.938). SEAK/PWS animals were also smaller than those born farther west, suggesting a possible link. Females weaned slightly earlier (+0.080 at age 1 and 2) compared with males in SEAK only. Poor survival for weaned versus unweaned yearlings occurred in southern SEAK (female survival probabilities: 0.609 vs. 0.792) and the central Gulf (0.667 vs. 0.901), suggesting poor conditions for juveniles in these areas. First-year survival increased with neonatal body mass (NBM) linearly in the Gulf and nonlinearly in SEAK. The probability of weaning at age 1 increased linearly with NBM for SEAK animals only. Rookeries where juveniles weaned at earlier ages had lower adult female survival, but age at weaning was unrelated to population trends. Our results suggest the time to weaning may be optimized for different habitats based on long-term average conditions (e.g., prey dynamics), that may also shape body size, with limited short-term plasticity. An apparent trade-off of adult survival in favor of juvenile survival and large offspring size in the endangered Gulf of Alaska population requires further study.

4.
Ecol Appl ; 31(2): e02249, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33140872

RESUMO

Community occupancy models estimate species-specific parameters while sharing information across species by treating parameters as sampled from a common distribution. When communities consist of discrete groups, shrinkage of estimates toward the community mean can mask differences among groups. Infinite-mixture models using a Dirichlet process (DP) distribution, in which the number of latent groups is estimated from the data, have been proposed as a solution. In addition to community structure, these models estimate species similarity, which allows testing hypotheses about whether traits drive species response to environmental conditions. We develop a community occupancy model (COM) using a DP distribution to model species-level parameters. Because clustering algorithms are sensitive to dimensionality and distinctiveness of clusters, we conducted a simulation study to explore performance of the DP-COM with different dimensions (i.e., different numbers of model parameters with species-level DP random effects) and under varying cluster differences. Because the DP-COM is computationally expensive, we compared its estimates to a COM with a normal random species effect. We further applied the DP-COM model to a bird data set from Uganda. Estimates of the number of clusters and species cluster identity improved with increasing difference among clusters and increasing dimensions of the DP; but the number of clusters was always overestimated. Estimates of number of sites occupied and species and community-level covariate coefficients on occupancy probability were generally unbiased with (near-) nominal 95% Bayesian Credible Interval coverage. Accuracy of estimates from the normal and the DP-COM was similar. The DP-COM clustered 166 bird species into 27 clusters regarding their affiliation with open or woodland habitat and distance to oil wells. Estimates of covariate coefficients were similar between a normal and the DP-COM. Except sunbirds, species within a family were not more similar in their response to these covariates than the overall community. Given that estimates were consistent between the normal and the DP-COM, and considering the computational burden for the DP models, we recommend using the DP-COM only when the analysis focuses on community structure and species similarity, as these quantities can only be obtained under the DP-COM.


Assuntos
Algoritmos , Ecossistema , Teorema de Bayes , Simulação por Computador
5.
Ecology ; 97(1): 194-204, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27008788

RESUMO

The dynamic, multi-season occupancy model framework has become a popular tool for modeling open populations with occupancies that change over time through local colonizations and extinctions. However, few versions of the model relate these probabilities to the occupancies of neighboring sites or patches. We present a modeling framework that incorporates this information and is capable of describing a wide variety of spatiotemporal colonization and extinction processes. A key feature of the model is that it is based on a simple set of small-scale rules describing how the process evolves. The result is a dynamic process that can account for complicated large-scale features. In our model, a site is more likely to be colonized if more of its neighbors were previously occupied and if it provides more appealing environmental characteristics than its neighboring sites. Additionally, a site without occupied neighbors may also become colonized through the inclusion of a long-distance dispersal process. Although similar model specifications have been developed for epidemiological applications, ours formally accounts for detectability using the well-known occupancy modeling framework. After demonstrating the viability and potential of this new form of dynamic occupancy model in a simulation study, we use it to obtain inference for the ongoing Common Myna (Acridotheres tristis) invasion in South Africa. Our results suggest that the Common Myna continues to enlarge its distribution and its spread via short distance movement, rather than long-distance dispersal. Overall, this new modeling framework provides a powerful tool for managers examining the drivers of colonization including short- vs. long-distance dispersal, habitat quality, and distance from source populations.


Assuntos
Ecossistema , Espécies Introduzidas , Modelos Biológicos , Estorninhos/fisiologia , Distribuição Animal , Animais , África do Sul
6.
Ecology ; 96(10): 2583-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26649379

RESUMO

Accurate estimates of demographic parameters are required to infer appropriate ecological relationships and inform management actions. Known-fate data from marked individuals are commonly used to estimate survival rates, whereas N-mixture models use count data from unmarked individuals to estimate multiple demographic parameters. However, a joint approach combining the strengths of both analytical tools has not been developed. Here we develop an integrated model combining known-fate and open N-mixture models, allowing the estimation of detection probability, recruitment, and the joint estimation of survival. We demonstrate our approach through both simulations and an applied example using four years of known-fate and pack count data for wolves (Canis lupus). Simulation results indicated that the integrated model reliably recovered parameters with no evidence of bias, and survival estimates were more precise under the joint model. Results from the applied example indicated that the marked sample of wolves was biased toward individuals with higher apparent survival rates than the unmarked pack mates, suggesting that joint estimates may be more representative of the overall population. Our integrated model is a practical approach for reducing bias while increasing precision and the amount of information gained from mark-resight data sets. We provide implementations in both the BUGS language and an R package.


Assuntos
Modelos Biológicos , Dinâmica Populacional , Lobos/fisiologia , Alaska , Animais , Análise de Sobrevida , Telemetria , Fatores de Tempo
7.
PLoS One ; 10(10): e0141416, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26496358

RESUMO

Ecologists are increasingly using statistical models to predict animal abundance and occurrence in unsampled locations. The reliability of such predictions depends on a number of factors, including sample size, how far prediction locations are from the observed data, and similarity of predictive covariates in locations where data are gathered to locations where predictions are desired. In this paper, we propose extending Cook's notion of an independent variable hull (IVH), developed originally for application with linear regression models, to generalized regression models as a way to help assess the potential reliability of predictions in unsampled areas. Predictions occurring inside the generalized independent variable hull (gIVH) can be regarded as interpolations, while predictions occurring outside the gIVH can be regarded as extrapolations worthy of additional investigation or skepticism. We conduct a simulation study to demonstrate the usefulness of this metric for limiting the scope of spatial inference when conducting model-based abundance estimation from survey counts. In this case, limiting inference to the gIVH substantially reduces bias, especially when survey designs are spatially imbalanced. We also demonstrate the utility of the gIVH in diagnosing problematic extrapolations when estimating the relative abundance of ribbon seals in the Bering Sea as a function of predictive covariates. We suggest that ecologists routinely use diagnostics such as the gIVH to help gauge the reliability of predictions from statistical models (such as generalized linear, generalized additive, and spatio-temporal regression models).


Assuntos
Modelos Estatísticos , Alaska , Algoritmos , Distribuição Animal , Animais , Carnívoros , Simulação por Computador , Conservação dos Recursos Naturais , Ecologia , Oceanos e Mares , Densidade Demográfica , Análise de Regressão , Reprodutibilidade dos Testes , Análise Espaço-Temporal
8.
Ecol Appl ; 24(2): 363-74, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24689147

RESUMO

Determining the range of a species and exploring species--habitat associations are central questions in ecology and can be answered by analyzing presence--absence data. Often, both the sampling of sites and the desired area of inference involve neighboring sites; thus, positive spatial autocorrelation between these sites is expected. Using survey data for the Southern Ground Hornbill (Bucorvus leadbeateri) from the Southern African Bird Atlas Project, we compared advantages and disadvantages of three increasingly complex models for species occupancy: an occupancy model that accounted for nondetection but assumed all sites were independent, and two spatial occupancy models that accounted for both nondetection and spatial autocorrelation. We modeled the spatial autocorrelation with an intrinsic conditional autoregressive (ICAR) model and with a restricted spatial regression (RSR) model. Both spatial models can readily be applied to any other gridded, presence--absence data set using a newly introduced R package. The RSR model provided the best inference and was able to capture small-scale variation that the other models did not. It showed that ground hornbills are strongly dependent on protected areas in the north of their South African range, but less so further south. The ICAR models did not capture any spatial autocorrelation in the data, and they took an order, of magnitude longer than the RSR models to run. Thus, the RSR occupancy model appears to be an attractive choice for modeling occurrences at large spatial domains, while accounting for imperfect detection and spatial autocorrelation.


Assuntos
Aves/fisiologia , Conservação dos Recursos Naturais , Demografia , Modelos Biológicos , Animais , África do Sul
9.
PLoS One ; 9(4): e93068, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24722344

RESUMO

Adult male and female northern fur seals (Callorhinus ursinus) are sexually segregated in different regions of the North Pacific Ocean and Bering Sea during their winter migration. Explanations for this involve interplay between physiology, predator-prey dynamics, and ecosystem characteristics, however possible mechanisms lack empirical support. To investigate factors influencing the winter ecology of both sexes, we deployed five satellite-linked conductivity, temperature, and depth data loggers on adult males, and six satellite-linked depth data loggers and four satellite transmitters on adult females from St. Paul Island (Bering Sea, Alaska, USA) in October 2009. Males and females migrated to different regions of the North Pacific Ocean: males wintered in the Bering Sea and northern North Pacific Ocean, while females migrated to the Gulf of Alaska and California Current. Horizontal and vertical movement behaviors of both sexes were influenced by wind speed, season, light (sun and moon), and the ecosystem they occupied, although the expression of the behaviors differed between sexes. Male dive depths were aligned with the depth of the mixed layer during daylight periods and we suspect this was the case for females upon their arrival to the California Current. We suggest that females, because of their smaller size and physiological limitations, must avoid severe winters typical of the northern North Pacific Ocean and Bering Sea and migrate long distances to areas of more benign environmental conditions and where prey is shallower and more accessible. In contrast, males can better tolerate often extreme winter ocean conditions and exploit prey at depth because of their greater size and physiological capabilities. We believe these contrasting winter behaviors 1) are a consequence of evolutionary selection for large size in males, important to the acquisition and defense of territories against rivals during the breeding season, and 2) ease environmental/physiological constraints imposed on smaller females.


Assuntos
Migração Animal , Otárias/fisiologia , Animais , Comportamento Animal , Dieta , Ecossistema , Feminino , Geografia , Masculino , Lua , Oceanos e Mares , Oceano Pacífico , Tecnologia de Sensoriamento Remoto , Comunicações Via Satélite , Estações do Ano , Temperatura , Vento
10.
Mov Ecol ; 2(1): 21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25709830

RESUMO

Animal movement is essential to our understanding of population dynamics, animal behavior, and the impacts of global change. Coupled with high-resolution biotelemetry data, exciting new inferences about animal movement have been facilitated by various specifications of contemporary models. These approaches differ, but most share common themes. One key distinction is whether the underlying movement process is conceptualized in discrete or continuous time. This is perhaps the greatest source of confusion among practitioners, both in terms of implementation and biological interpretation. In general, animal movement occurs in continuous time but we observe it at fixed discrete-time intervals. Thus, continuous time is conceptually and theoretically appealing, but in practice it is perhaps more intuitive to interpret movement in discrete intervals. With an emphasis on state-space models, we explore the differences and similarities between continuous and discrete versions of mechanistic movement models, establish some common terminology, and indicate under which circumstances one form might be preferred over another. Counter to the overly simplistic view that discrete- and continuous-time conceptualizations are merely different means to the same end, we present novel mathematical results revealing hitherto unappreciated consequences of model formulation on inferences about animal movement. Notably, the speed and direction of movement are intrinsically linked in current continuous-time random walk formulations, and this can have important implications when interpreting animal behavior. We illustrate these concepts in the context of state-space models with multiple movement behavior states using northern fur seal (Callorhinus ursinus) biotelemetry data.

11.
J Anim Ecol ; 82(6): 1155-64, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23800202

RESUMO

1. Analyses of animal resource selection functions (RSF) using data collected from relocations of individuals via remote telemetry devices have become commonplace. Increasing technological advances, however, have produced statistical challenges in analysing such highly autocorrelated data. Weighted distribution methods have been proposed for analysing RSFs with telemetry data. However, they can be computationally challenging due to an intractable normalizing constant and cannot be aggregated (i.e. collapsed) over time to make space-only inference. 2. In this study, we take a conceptually different approach to modelling animal telemetry data for making RSF inference. We consider the telemetry data to be a realization of a space-time point process. Under the point process paradigm, the times of the relocations are also considered to be random rather than fixed. 3. We show the point process models we propose are a generalization of the weighted distribution telemetry models. By generalizing the weighted model, we can access several numerical techniques for evaluating point process likelihoods that make use of common statistical software. Thus, the analysis methods can be readily implemented by animal ecologists. 4. In addition to ease of computation, the point process models can be aggregated over time by marginalizing over the temporal component of the model. This allows a full range of models to be constructed for RSF analysis at the individual movement level up to the study area level. 5. To demonstrate the analysis of telemetry data with the point process approach, we analysed a data set of telemetry locations from northern fur seals (Callorhinus ursinus) in the Pribilof Islands, Alaska. Both a space-time and an aggregated space-only model were fitted. At the individual level, the space-time analysis showed little selection relative to the habitat covariates. However, at the study area level, the space-only model showed strong selection relative to the covariates.


Assuntos
Ecologia/métodos , Ecossistema , Otárias/fisiologia , Modelos Biológicos , Telemetria , Alaska , Animais
12.
J Anim Ecol ; 82(6): 1146-54, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23574332

RESUMO

1. Analyses based on utilization distributions (UDs) have been ubiquitous in animal space use studies, largely because they are computationally straightforward and relatively easy to employ. Conventional applications of resource utilization functions (RUFs) suggest that estimates of UDs can be used as response variables in a regression involving spatial covariates of interest. 2. It has been claimed that contemporary implementations of RUFs can yield inference about resource selection, although to our knowledge, an explicit connection has not been described. 3. We explore the relationships between RUFs and resource selection functions from a hueristic and simulation perspective. We investigate several sources of potential bias in the estimation of resource selection coefficients using RUFs (e.g. the spatial covariance modelling that is often used in RUF analyses). 4. Our findings illustrate that RUFs can, in fact, serve as approximations to RSFs and are capable of providing inference about resource selection, but only with some modification and under specific circumstances. 5. Using real telemetry data as an example, we provide guidance on which methods for estimating resource selection may be more appropriate and in which situations. In general, if telemetry data are assumed to arise as a point process, then RSF methods may be preferable to RUFs; however, modified RUFs may provide less biased parameter estimates when the data are subject to location error.


Assuntos
Ecologia/métodos , Ecossistema , Modelos Biológicos , Puma/fisiologia , Animais , Colorado , Telemetria
13.
Ecology ; 94(11): 2607-18, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24400512

RESUMO

Ecologists often use transect surveys to estimate the density and abundance of animal populations. Errors in species classification are often evident in such surveys, yet few statistical methods exist to properly account for them. In this paper, we examine biases that result from species misidentification when ignored, and we develop statistical models to provide unbiased estimates of density in the face of such errors. Our approach treats true species identity as a latent variable and requires auxiliary information on the misclassification process (such as informative priors, experiments using known species, or a double-observer protocol). We illustrate our approach with simulated census data and with double-observer survey data for ice-associated seals in the Bering Sea. For the seal analysis, we integrated misclassification into a model-based framework for distance-sampling data. The simulated data analysis demonstrated reliable estimation of animal density when there are experimental data to inform misclassification rates; double-observer protocols provided robust inference when there were "unknown" species observations but no outright misclassification, or when misclassification probabilities were symmetric and a symmetry constraint was imposed during estimation. Under our modeling framework, we obtained reasonable apparent densities of seal species even under considerable imprecision in species identification. We obtained more reliable inferences when modeling variation in density among transects. We argue that ecologists should often use spatially explicit models to account for differences in species distributions when trying to account for species misidentification. Our results support using double-observer sampling protocols that guard against species misclassification (i.e., by recording uncertain observations as "unknown").


Assuntos
Caniformia/classificação , Ecossistema , Animais , Regiões Árticas , Conservação de Recursos Energéticos , Conservação dos Recursos Naturais , Demografia , Oceanos e Mares , Densidade Demográfica , Especificidade da Espécie
14.
PLoS One ; 7(8): e42294, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905121

RESUMO

Ecologists often use multiple observer transect surveys to census animal populations. In addition to animal counts, these surveys produce sequences of detections and non-detections for each observer. When combined with additional data (i.e. covariates such as distance from the transect line), these sequences provide the additional information to estimate absolute abundance when detectability on the transect line is less than one. Although existing analysis approaches for such data have proven extremely useful, they have some limitations. For instance, it is difficult to extrapolate from observed areas to unobserved areas unless a rigorous sampling design is adhered to; it is also difficult to share information across spatial and temporal domains or to accommodate habitat-abundance relationships. In this paper, we introduce a hierarchical modeling framework for multiple observer line transects that removes these limitations. In particular, abundance intensities can be modeled as a function of habitat covariates, making it easier to extrapolate to unsampled areas. Our approach relies on a complete data representation of the state space, where unobserved animals and their covariates are modeled using a reversible jump Markov chain Monte Carlo algorithm. Observer detections are modeled via a bivariate normal distribution on the probit scale, with dependence induced by a distance-dependent correlation parameter. We illustrate performance of our approach with simulated data and on a known population of golf tees. In both cases, we show that our hierarchical modeling approach yields accurate inference about abundance and related parameters. In addition, we obtain accurate inference about population-level covariates (e.g. group size). We recommend that ecologists consider using hierarchical models when analyzing multiple-observer transect data, especially when it is difficult to rigorously follow pre-specified sampling designs. We provide a new R package, hierarchicalDS, to facilitate the building and fitting of these models.


Assuntos
Biometria/métodos , Densidade Demográfica , Algoritmos , Animais , Teorema de Bayes , Coleta de Dados , Interpretação Estatística de Dados , Ecossistema , Cadeias de Markov , Modelos Estatísticos , Modelos Teóricos , Método de Monte Carlo , Distribuição de Poisson , Dinâmica Populacional , Probabilidade
15.
PLoS One ; 6(11): e25677, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22102854

RESUMO

The problem of simultaneous covariate selection and parameter inference for spatial regression models is considered. Previous research has shown that failure to take spatial correlation into account can influence the outcome of standard model selection methods. A Markov chain Monte Carlo (MCMC) method is investigated for the calculation of parameter estimates and posterior model probabilities for spatial regression models. The method can accommodate normal and non-normal response data and a large number of covariates. Thus the method is very flexible and can be used to fit spatial linear models, spatial linear mixed models, and spatial generalized linear mixed models (GLMMs). The Bayesian MCMC method also allows a priori unequal weighting of covariates, which is not possible with many model selection methods such as Akaike's information criterion (AIC). The proposed method is demonstrated on two data sets. The first is the whiptail lizard data set which has been previously analyzed by other researchers investigating model selection methods. Our results confirmed the previous analysis suggesting that sandy soil and ant abundance were strongly associated with lizard abundance. The second data set concerned pollution tolerant fish abundance in relation to several environmental factors. Results indicate that abundance is positively related to Strahler stream order and a habitat quality index. Abundance is negatively related to percent watershed disturbance.


Assuntos
Teorema de Bayes , Modelos Estatísticos , Método de Monte Carlo , Animais , Ecossistema , Meio Ambiente , Peixes , Lagartos , Cadeias de Markov , Densidade Demográfica , Abastecimento de Água
16.
PLoS One ; 6(8): e22795, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21931584

RESUMO

Understanding animal movement and resource selection provides important information about the ecology of the animal, but an animal's movement and behavior are not typically constant in time. We present a velocity-based approach for modeling animal movement in space and time that allows for temporal heterogeneity in an animal's response to the environment, allows for temporal irregularity in telemetry data, and accounts for the uncertainty in the location information. Population-level inference on movement patterns and resource selection can then be made through cluster analysis of the parameters related to movement and behavior. We illustrate this approach through a study of northern fur seal (Callorhinus ursinus) movement in the Bering Sea, Alaska, USA. Results show sex differentiation, with female northern fur seals exhibiting stronger response to environmental variables.


Assuntos
Otárias/fisiologia , Modelos Biológicos , Movimento/fisiologia , Animais , Análise por Conglomerados , Feminino , Geografia , Masculino , Oceano Pacífico , Dinâmica Populacional , Fatores de Tempo
17.
Conserv Biol ; 24(6): 1538-48, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20497204

RESUMO

Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies conservation planning.


Assuntos
Arvicolinae , Conservação dos Recursos Naturais/métodos , Modelos Teóricos , Mustelidae , Caramujos , Animais , Teorema de Bayes , Dinâmica Populacional
18.
Biometrics ; 66(1): 310-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19459840

RESUMO

We consider a fully model-based approach for the analysis of distance sampling data. Distance sampling has been widely used to estimate abundance (or density) of animals or plants in a spatially explicit study area. There is, however, no readily available method of making statistical inference on the relationships between abundance and environmental covariates. Spatial Poisson process likelihoods can be used to simultaneously estimate detection and intensity parameters by modeling distance sampling data as a thinned spatial point process. A model-based spatial approach to distance sampling data has three main benefits: it allows complex and opportunistic transect designs to be employed, it allows estimation of abundance in small subregions, and it provides a framework to assess the effects of habitat or experimental manipulation on density. We demonstrate the model-based methodology with a small simulation study and analysis of the Dubbo weed data set. In addition, a simple ad hoc method for handling overdispersion is also proposed. The simulation study showed that the model-based approach compared favorably to conventional distance sampling methods for abundance estimation. In addition, the overdispersion correction performed adequately when the number of transects was high. Analysis of the Dubbo data set indicated a transect effect on abundance via Akaike's information criterion model selection. Further goodness-of-fit analysis, however, indicated some potential confounding of intensity with the detection function.


Assuntos
Biometria/métodos , Interpretação Estatística de Dados , Ecossistema , Monitoramento Ambiental/métodos , Modelos Estatísticos , Densidade Demográfica , Tamanho da Amostra , Simulação por Computador
19.
Ecology ; 89(5): 1208-15, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18543615

RESUMO

We propose a continuous-time version of the correlated random walk model for animal telemetry data. The continuous-time formulation allows data that have been nonuniformly collected over time to be modeled without subsampling, interpolation, or aggregation to obtain a set of locations uniformly spaced in time. The model is derived from a continuous-time Ornstein-Uhlenbeck velocity process that is integrated to form a location process. The continuous-time model was placed into a state-space framework to allow parameter estimation and location predictions from observed animal locations. Two previously unpublished marine mammal telemetry data sets were analyzed to illustrate use of the model, by-products available from the analysis, and different modifications which are possible. A harbor seal data set was analyzed with a model that incorporates the proportion of each hour spent on land. Also, a northern fur seal pup data set was analyzed with a random drift component to account for directed travel and ocean currents.


Assuntos
Comportamento Animal/fisiologia , Modelos Biológicos , Telemetria/veterinária , Animais , Ecossistema , Otárias/fisiologia , Phoca/fisiologia , Fatores de Tempo
20.
Conserv Biol ; 22(4): 1026-36, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18477026

RESUMO

Regional conservation planning increasingly draws on habitat suitability models to support decisions regarding land allocation and management. Nevertheless, statistical techniques commonly used for developing such models may give misleading results because they fail to account for 3 factors common in data sets of species distribution: spatial autocorrelation, the large number of sites where the species is absent (zero inflation), and uneven survey effort. We used spatial autoregressive models fit with Bayesian Markov Chain Monte Carlo techniques to assess the relationship between older coniferous forest and the abundance of Northern Spotted Owl nest and activity sites throughout the species' range. The spatial random-effect term incorporated in the autoregressive models successfully accounted for zero inflation and reduced the effect of survey bias on estimates of species-habitat associations. Our results support the hypothesis that the relationship between owl distribution and older forest varies with latitude. A quadratic relationship between owl abundance and older forest was evident in the southern portion of the range, and a pseudothreshold relationship was evident in the northern portion of the range. Our results suggest that proposed changes to the network of owl habitat reserves would reduce the proportion of the population protected by up to one-third, and that proposed guidelines for forest management within reserves underestimate the proportion of older forest associated with maximum owl abundance and inappropriately generalize threshold relationships among subregions. Bayesian spatial models can greatly enhance the utility of habitat analysis for conservation planning because they add the statistical flexibility necessary for analyzing regional survey data while retaining the interpretability of simpler models.


Assuntos
Modelos Biológicos , Estrigiformes/fisiologia , Animais , Teorema de Bayes , Demografia , Ecossistema , Método de Monte Carlo , Distribuição de Poisson , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA