Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 7(6): 1766-1776, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35671512

RESUMO

The selective translocation of molecules through membrane pores is an integral process in cells. We present a bacterial sugar transporter, CymA of unusual structural conformation due to a dynamic N terminus segment in the pore, reducing its diameter. We quantified the translocation kinetics of various cyclic sugars of different charge, size, and symmetry across native and truncated CymA devoid of the N terminus using single-channel recordings. The chemically divergent cyclic hexasaccharides bind to the native and truncated pore with high affinity and translocate effectively. Specifically, these sugars bind and translocate rapidly through truncated CymA compared to native CymA. In contrast, larger cyclic heptasaccharides and octasaccharides do not translocate but bind to native and truncated CymA with distinct binding kinetics highlighting the importance of molecular charge, size and symmetry in translocation consistent with liposome assays. Based on the sugar-binding kinetics, we suggest that the N terminus most likely resides inside the native CymA barrel, regulating the transport rate of cyclic sugars. Finally, we present native CymA as a large nanopore sensor for the simultaneous single-molecule detection of various sugars at high resolution, establishing its functional versatility. This natural pore is expected to have several applications in nanobiotechnology and will help further our understanding of the fundamental mechanism of molecular transport.


Assuntos
Nanoporos , Açúcares , Transporte Biológico , Cinética
2.
Mol Ther Oncolytics ; 23: 254-265, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34761105

RESUMO

Chandipura virus (CHPV) is an emerging human pathogen of great clinical significance. In this study, we have investigated the susceptibility pattern of both normal and cancer cell lines of human origin to wild-type (wt) CHPV in order to explore the possibility of developing CHPV as an oncolytic vector (OV). Marked cytopathic effect along with enhanced virus output was observed in cancer cell lines (HeLa, A549, U-138, PC-3, and HepG2) in comparison to normal human adult dermal fibroblast (HADF) cells. At an MOI of 0.1, cancer cell lines were differentially susceptible to CHPV, with cells like HeLa and U-138 having pronounced cell death, while the PC-3 were comparatively resistant. All cell lines used in the study except U-138 restricted CHPV infection to varying degrees with IFN-ß pre-treatment and supplementation of interferon (IFN) could neither activate the IFN signaling pathway in U-138 cells. Finally, U-138 tumor xenografts established in non-obese diabetic severe combined immunodeficiency (NOD/SCID) mice showed significant delay in tumor growth in the CHPV-challenged animals. Thus, targeted cytopathic effect in cancer cells at a very low dose with restricted replication in normal cells offers a rationale to exploit CHPV as an oncolytic vector in the future.

3.
Viruses ; 13(3)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652918

RESUMO

The human complement system is an important part of the innate immune system. Its effector pathways largely mediate virus neutralization. Vesicular stomatitis virus (VSV) activates the classical pathway of the complement, leading to virus neutralization by lysis. Two host-derived membrane-associated regulators of complement activation (RCA), CD55 and CD46, which are incorporated into the VSV envelope during egress, confer protection by delaying/resisting complement-mediated neutralization. We showed previously that CD55 is more effective than CD46 in the inhibition of neutralization. In this study, we identified that, at the protein level, VSV infection resulted in the down-regulation of CD46 but not CD55. The mRNA of both the RCAs was significantly down-regulated by VSV, but it was delayed in the case of CD55. The immunoblot analysis of the levels of RCAs in the progeny virion harvested at three specific time intervals, points to an equal ratio of its distribution relative to viral proteins. Besides reconfirming the dominant role of CD55 over CD46 in shielding VSV from complement, our results also highlight the importance of the subtle modulation in the expression pattern of RCAs in a system naturally expressing them.


Assuntos
Antígenos CD55/imunologia , Proteínas do Sistema Complemento/imunologia , Estomatite Vesicular/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Células A549 , Linhagem Celular Tumoral , Ativação do Complemento/imunologia , Células HeLa , Humanos , Proteína Cofatora de Membrana/imunologia , Testes de Neutralização/métodos , RNA Mensageiro/imunologia , Vírion/imunologia
4.
Front Immunol ; 11: 573583, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133089

RESUMO

Complement, a part of the innate arm of the immune system, is integral to the frontline defense of the host against innumerable pathogens, which includes RNA viruses. Among the major groups of viruses, RNA viruses contribute significantly to the global mortality and morbidity index associated with viral infection. Despite multiple routes of entry adopted by these viruses, facing complement is inevitable. The initial interaction with complement and the nature of this interaction play an important role in determining host resistance versus susceptibility to the viral infection. Many RNA viruses are potent activators of complement, often resulting in virus neutralization. Yet, another facet of virus-induced activation is the exacerbation in pathogenesis contributing to the overall morbidity. The severity in disease and death associated with RNA virus infections shows a tip in the scale favoring viruses. Growing evidence suggest that like their DNA counterparts, RNA viruses have co-evolved to master ingenious strategies to remarkably restrict complement. Modulation of host genes involved in antiviral responses contributed prominently to the adoption of unique strategies to keep complement at bay, which included either down regulation of activation components (C3, C4) or up regulation of complement regulatory proteins. All this hints at a possible "hijacking" of the cross-talk mechanism of the host immune system. Enveloped RNA viruses have a selective advantage of not only modulating the host responses but also recruiting membrane-associated regulators of complement activation (RCAs). This review aims to highlight the significant progress in the understanding of RNA virus-complement interactions.


Assuntos
Imunidade Adaptativa , Ativação do Complemento , Proteínas do Sistema Complemento/imunologia , Imunidade Inata , Infecções por Vírus de RNA/virologia , Vírus de RNA/patogenicidade , Animais , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Evolução Molecular , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/mortalidade , Vírus de RNA/genética , Vírus de RNA/imunologia , Índice de Gravidade de Doença
5.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31941783

RESUMO

Chikungunya virus (CHIKV) is an emerging pathogen capable of causing explosive outbreaks. Prior studies showed that exacerbation in arthritogenic alphavirus-induced pathogenesis is attributed to its interaction with multiple immune components, including the complement system. Viremia concomitant to CHIKV infection makes exposure of the virus to complement unavoidable, yet very little is known about CHIKV-complement interactions. Here, we show that CHIKV activated serum complement to modest levels in a concentration- and time-dependent manner, but the virus effectively resisted complement-mediated neutralization. Heat-inactivated serum from seropositive donors could actively neutralize CHIKV due to the presence of potent anti-CHIKV antibodies. Deposition of key complement components C3 and C4 did not alter the resistance of CHIKV to complement. Further, we identified a factor I-like activity in CHIKV that limited complement by inactivating C3b into inactive C3b (iC3b), the complement component known to significantly contribute to disease severity in vivo, but this activity had no effect on C4b. Inactivation of C3b by CHIKV was largely dependent on the concentration of the soluble host cofactor factor H and the virus concentration. A factor I function-blocking antibody had only a negligible effect on the factor I-like activity associated with CHIKV, suggesting that this activity is independent of host factor I and could be of viral origin. Thus, our findings suggest a complement modulatory action of CHIKV which not only helps the virus to evade human complement but may also have implications in alphavirus-induced arthritogenic symptoms.IMPORTANCE Chikungunya virus is a vector-borne pathogen of global significance. The morbidity associated with chikungunya virus (CHIKV) infection, neurovirulence and adaptability to Aedes albopictus, necessitates a deeper understanding of the interaction of CHIKV with the host immune system. Here, we demonstrate that CHIKV is resistant to neutralization by one of the potent barriers of the innate immune arm, the complement system. Chikungunya virus showed marked resistance to complement despite activation and deposition of complement proteins. Interestingly the C3 component associated with the virion was found to be inactive C3b (iC3b), a key factor implicated in the pathogenesis and disease severity in the mouse model of Ross River virus infection. CHIKV also had an associated unique factor I-like activity that mediated the inactivation of C3b into iC3b. We have unraveled a smart strategy adopted by CHIKV to limit complement which has serious implications in viral dissemination, pathogenesis, and disease.


Assuntos
Febre de Chikungunya/imunologia , Ativação do Complemento , Complemento C3b/imunologia , Fibrinogênio/imunologia , Adulto , Animais , Anticorpos Antivirais/imunologia , Vírus Chikungunya , Chlorocebus aethiops , Complemento C4/imunologia , Fator H do Complemento/imunologia , Surtos de Doenças , Humanos , Testes de Neutralização , Células Vero , Replicação Viral
6.
J Virol ; 93(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31315998

RESUMO

Among the innate immune sentinels, the complement system is a formidable first line of defense against pathogens, including viruses. Chandipura virus (CHPV), a neurotropic vesiculovirus of the family Rhabdoviridae, is a deadly human pathogen known to cause fatal encephalitis, especially among children. The nature of interaction and the effect of human complement on CHPV are unknown. Here, we report that CHPV is a potent activator of complement and, thus, is highly sensitive to complement proteins in normal human serum (NHS). Utilizing a panel of specific complement component depleted/reconstituted human serum, we have demonstrated that CHPV neutralization is C3, C4, and C1q dependent and independent of factor B, suggesting the importance of the classical pathway in limiting CHPV. Employing a range of biochemical approaches, we showed (i) a direct association of C1q to CHPV, (ii) deposition of complement proteins C3b, C4b, and C1q on CHPV, and (iii) virus aggregation. Depletion of C8, an important component of the pore-forming complex of complement, had no effect on CHPV, further supporting the finding that aggregation and not virolysis is the mechanism of virus neutralization. With no approved vaccines or treatment modalities in place against CHPV, insights into such interactions can be exploited to develop potent vaccines or therapeutics targeting CHPV.IMPORTANCE Chandipura virus is a clinically important human pathogen of the Indian subcontinent. The rapidity of death associated with CHPV infection in addition to the absence of an effective vaccine or therapeutics results in poor clinical prognosis. The biology of the virus and its interaction with the host immune system, including the complement system, are understudied. Our investigation reveals the susceptibility of CHPV to fluid phase complement and also dissects the pathway involved and the mechanism of virus neutralization. Direct binding of C1q, an important upstream component of the classical pathway of complement to CHPV, and the strong dependency on C1q for virus neutralization highlight the significance of identifying such interactions to better understand CHPV pathogenesis and devise strategies to target this deadly pathogen.


Assuntos
Ativação do Complemento , Complemento C1q/metabolismo , Fatores Imunológicos/metabolismo , Vesiculovirus/imunologia , Complemento C3b/metabolismo , Complemento C4b/metabolismo , Via Clássica do Complemento , Humanos , Testes de Neutralização , Soro/imunologia , Soro/virologia
7.
FEBS J ; 283(16): 3056-71, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27334653

RESUMO

Rv3334 protein of Mycobacterium tuberculosis belongs to the MerR family of transcriptional regulators and is upregulated during hypoxia and other stress conditions. Employing GFP reporter constructs, mobility shift assays and ChIP assays, we demonstrate that Rv3334 binds to its own promoter and acts as an autorepressor. We were able to locate a 22 bp palindrome in its promoter that we show to be the cognate binding sequence of Rv3334. Using chase experiments, we could conclusively prove the requirement of this palindrome for Rv3334 binding. Recombinant Rv3334 readily formed homodimers in vitro, which could be necessary for its transcriptional regulatory role in vivo. Although the DNA-binding activity of the protein was abrogated by the presence of certain divalent metal cations, the homodimer formation remained unaffected. In silico predictions and subsequent assays using GFP reporter constructs and mobility shift assays revealed that the expression of ketosteroid regulator gene (kstR), involved in lipid catabolism, is positively regulated by Rv3334. ChIP assays with aerobically grown M. tuberculosis as well as dormant bacteria unambiguously prove that Rv3334 specifically upregulates expression of kstR during dormancy. Our study throws light on the possible role of Rv3334 as a master regulator of lipid catabolism during hypoxia-induced dormancy.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/genética , DNA/metabolismo , Sequências Repetidas Invertidas , Metais Pesados/metabolismo , Mycobacterium tuberculosis/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Multimerização Proteica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA