Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Neurosci ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755005

RESUMO

Preclinical assessments of pain have often relied upon behavioral measurements and anesthetized neurophysiological recordings. Current technologies enabling large scale neural recordings, however, have the potential to unveil quantifiable pain signals in conscious animals for preclinical studies. Although pain processing is distributed across many brain regions, the anterior cingulate cortex (ACC) is of particular interest in isolating these signals given its suggested role in the affective ('unpleasant') component of pain. Here, we explored the utility of the ACC towards preclinical pain research using head-mounted miniaturized microscopes to record calcium transients in freely moving male mice expressing GCaMP6f under the Thy1 promoter. We verified the expression of GCaMP6f in excitatory neurons and found no intrinsic behavioral differences in this model. Using a multimodal stimulation paradigm across naive, pain, and analgesic conditions, we found that while ACC population activity roughly scaled with stimulus intensity, single cell representations were highly flexible. We found only low magnitude increases in population activity after CFA, and insufficient evidence for the existence of a robust nociceptive ensemble in the ACC. However, we found a temporal sharpening of response durations and generalized increases in pairwise neural correlations in the presence of the mechanistically distinct analgesics gabapentin or ibuprofen after (but not before) CFA induced inflammatory pain. This increase was not explainable by changes in locomotion alone. Taken together, these results highlight challenges in isolating distinct pain signals amongst flexible representations in the ACC but suggest a neurophysiological hallmark of analgesia after pain that generalizes to at least two analgesics.Significance Statement Our study measured neural activity in the anterior cingulate cortex (ACC) of transgenic mice to improve measures of pain and analgesia in preclinical models. We found that although ACC population activity scaled with stimulus intensity and could be decoded, single cell representations of sensory stimuli were flexible. Low magnitude increases in ACC population activity were observed after pain, but subpopulations with specific activity changes driven by pain/analgesia were difficult to disambiguate from intrinsic variability. Interestingly, responses were temporally sharpened and exhibited increased cell to cell correlations in the presence of two distinct analgesics after CFA but not before. These distinct neural signatures of analgesia occurring only after pain may broaden our understanding of central mechanisms of pain and analgesia.

3.
Headache ; 63(9): 1240-1250, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796114

RESUMO

OBJECTIVE: The objective of this study was to characterize the utility of calcitonin gene-related peptide (CGRP) and nerve growth factor (NGF) as potential biomarkers for headache and pain disorders in the post-military deployment setting. BACKGROUND: The need to improve recognition, assessment, and prognoses of individuals with posttraumatic headache or other pain has increased interest in the potential of CGRP and NGF as biomarkers. METHODS: The Warrior Strong Study (NCT01847040) is an observational longitudinal study of United States-based soldiers who had recently returned from deployment to Afghanistan or Iraq from 2009 to 2014. The present nested cross-sectional analysis uses baseline data collected from soldiers returning to Fort Bragg, North Carolina. RESULTS: In total, 264 soldiers (mean (standard deviation [SD] age 28.1 [6.4] years, 230/264 [87.1%] men, 171/263 [65.0%] White) were analyzed. Mean (SD) plasma levels of CGRP were 1.3 (1.1) pg/mL and mean levels of NGF were 1.4 (0.4) pg/mL. Age was negatively correlated with NGF (-0.01 pg/mL per year, p = 0.007) but was not associated with CGRP. Men had higher mean (SD) CGRP plasma levels than women (1.4 95% confidence interval [CI; 1.2] vs. 0.9 95% CI [0.5] pg/mL, p < 0.002, Kruskal-Wallis test). CGRP levels were lower in participants who had a headache at the time of the blood draw (1.0 [0.6] pg/mL vs. 1.4 [1.2] pg/mL, p = 0.024). NGF was lower in participants with continuous pain (all types; 1.2 [0.4] vs. 1.4 [0.4] pg/mL, p = 0.027) and was lower in participants with traumatic brain injury (TBI) + posttraumatic headache (PTH) versus TBI without PTH (1.3 [0.3] vs. 1.4 [0.4] pg/mL, p = 0.021). Otherwise, CGRP and NGF were not associated with migraine-like headache, TBI status, or headache burden as measured by the number of medical encounters in crude or adjusted models. CONCLUSION: In this exploratory study, plasma levels of NGF and CGRP showed promise as biomarkers for headache and other types of pain. These findings need to be replicated in other cohorts.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Militares , Cefaleia Pós-Traumática , Masculino , Humanos , Feminino , Estados Unidos , Adulto , Peptídeo Relacionado com Gene de Calcitonina , Estudos Longitudinais , Estudos Transversais , Fator de Crescimento Neural , Cefaleia/complicações , Dor/complicações , Cefaleia Pós-Traumática/diagnóstico , Cefaleia Pós-Traumática/complicações , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico , Lesões Encefálicas Traumáticas/complicações , Biomarcadores
4.
Clin Pharmacol Ther ; 114(5): 1093-1103, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37562824

RESUMO

Transient receptor potential Ankyrin 1 (TRPA1) is an ion channel expressed by sensory neurons, where it mediates pain signaling. Consequently, it has emerged as a promising target for novel analgesics, yet, to date, no TRPA1 antagonists have been approved for clinical use. In the present translational study, we utilized dermal blood flow changes evoked by TRPA1 agonist cinnamaldehyde as a target engagement biomarker to investigate the in vivo pharmacology of LY3526318, a novel TRPA1 antagonist. In rats, LY3526318 (1, 3, and 10 mg/kg, p.o.) dose-dependently reduced the cutaneous vasodilation typically observed following topical application of 10% v/v cinnamaldehyde. The inhibition was significant at the site of cinnamaldehyde application and also when including an adjacent area of skin. Similarly, in a cohort of 16 healthy human volunteers, LY3526318 administration (10, 30, and 100 mg, p.o.) dose-dependently reduced the elevated blood flow surrounding the site of 10% v/v cinnamaldehyde application, with a trend toward inhibition at the site of application. Comparisons between both species reveal that the effects of LY3526318 on the cinnamaldehyde-induced dermal blood flow are greater in rats relative to humans, even when adjusting for cross-species differences in potency of the compound at TRPA1. Exposure-response relationships suggest that a greater magnitude response may be observed in humans if higher antagonist concentrations could be achieved. Taken together, these results demonstrate that cinnamaldehyde-evoked changes in dermal blood flow can be utilized as a target engagement biomarker for TRPA1 activity and that LY3526318 antagonizes the ion channel both in rats and humans.

5.
J Pain Res ; 16: 2331-2346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456357

RESUMO

Objective: To assess associations of plasma calcitonin gene-related peptide (CGRP) with chronic temporomandibular disorder (TMD) myalgia/arthralgia or frequent/chronic migraine, alone and in combination, and to evaluate relations between the CGRP concentration and clinical, psychological, and somatosensory characteristics of participants. Methods: The cross-sectional study selected four groups of adult volunteers: healthy controls (HCs), TMD without migraine, migraine without TMD, and TMD with migraine. Each group comprised 20 participants, providing 94% power to detect statistically significant associations with CGRP concentration for either TMD or migraine. TMD and headache were classified according to the Diagnostic Criteria for TMD and the International Classification for Headache Disorders, 3rd edition, respectively. Plasma CGRP was quantified with a validated high-sensitivity electrochemiluminescent Meso Scale Discovery assay. Questionnaires and clinical examinations were used to evaluate characteristics of TMD, headache, psychological distress, and pressure pain sensitivity. Univariate regression models quantified associations of the CGRP concentration with TMD, migraine, and their interaction. Univariate associations of the CGRP concentration with clinical, psychological, and pressure pain characteristics were also assessed. Results: Among 80 participants enrolled, neither TMD nor migraine was associated with plasma CGRP concentration (P = 0.761 and P = 0.972, respectively). The CGRP concentration (mean ± SD) was similar in all 4 groups: HCs 2.0 ± 0.7 pg/mL, TMD 2.1 ± 0.8 pg/mL, migraine 2.1 ± 0.9 pg/mL, and TMD with migraine 2.2 ± 0.7 pg/mL. CGRP concentration was positively associated with age (P = 0.034) and marginally with body mass index (P = 0.080) but was unrelated to other participant characteristics. Conclusion: In this well-powered study, interictal plasma concentration of CGRP was a poor biomarker for TMD and migraine.

6.
ERJ Open Res ; 9(4)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37465557

RESUMO

This study provides the first evidence for a role of airway sCSF1R in IPF https://bit.ly/3KTBrCA.

7.
Headache ; 62(7): 848-857, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35822594

RESUMO

OBJECTIVE: To characterize the effects of blocking calcitonin gene-related peptide (CGRP) activity in a mouse model of gastrointestinal transport. BACKGROUND: Migraine management using CGRP modulating therapies can cause constipation of varying frequency and severity. This variation might be due to the different mechanisms through which therapies block CGRP activity (e.g., blocking CGRP, or the CGRP receptor) with antibodies or receptor antagonists. The charcoal meal gastrointestinal transit assay was used to characterize constipation produced by these modes of therapy in transgenic mice expressing the human receptor activity-modifying protein 1 (hRAMP1) subunit of the CGRP receptor complex. METHODS: Male and female hRAMP1 mice were dosed with compound or vehicle and challenged with a charcoal meal suspension via oral gavage. The mice were then humanely euthanized and the proportion of the length of the large intestine that the charcoal meal had traveled indicated gastrointestinal transit. RESULTS: Antibody to the CGRP receptor produced % distance traveled (mean ± standard deviation) of 31.8 ± 8.2 (4 mg/kg; p = 0.001) and 33.2 ± 6.0 (30 mg/kg; p < 0.001) compared to 49.7 ± 8.3 (control) in female mice (n = 6-8), and 35.6 ± 13.5 (30 mg/kg, p = 0.019) compared to 50.2 ± 14.0 (control) in male mice (n = 10). Telcagepant (5 mg/kg, n = 8) resulted in % travel of 30.6 ± 14.7 versus 41.2 ± 8.3 (vehicle; p = 0.013) in male mice. Atogepant (3 mg/kg, n = 9) resulted in % travel of 30.6 ± 12.0, versus 41.2 ± 3.7 (control; p = 0.030) in female mice. The CGRP antibody galcanezumab (n = 7-10; p = 0.958 and p = 0.929) did not have a statistically significant effect. CONCLUSIONS: These results are consistent with reported clinical data. Selectively blocking the CGRP receptor may have a greater impact on gastrointestinal transit than attenuating the activity of the ligand CGRP. This differential effect may be related to physiologically opposing mechanisms between the CGRP and AMY1 receptors, as the CGRP ligand antibody could inhibit the effects of CGRP at both the CGRP and AMY1 receptors.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Animais , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Carvão Vegetal , Constipação Intestinal , Feminino , Humanos , Intestino Grosso/metabolismo , Ligantes , Masculino , Camundongos , Camundongos Transgênicos , Piperidinas , Piridinas , Pirróis , Proteína 1 Modificadora da Atividade de Receptores , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Compostos de Espiro
8.
Br J Pharmacol ; 179(3): 358-370, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34600443

RESUMO

BACKGROUND AND PURPOSE: Lasmiditan is a novel selective 5-HT1F receptor agonist, recently approved for acute treatment of migraine. 5-HT1F receptors are widely expressed in the CNS and trigeminovascular system. Here, we have explored the therapeutic effects of 5-HT1F receptor activation in preclinical models of migraine and cluster headache. EXPERIMENTAL APPROACH: Electrical stimulation of the dura mater or the superior salivatory nucleus in anaesthetised rats evoked trigeminovascular or trigeminal-autonomic reflex activation at the level of the trigeminocervical complex. Additionally, cranial autonomic manifestations in response to trigeminal-autonomic reflex activation were measured, via anterior choroidal blood flow alterations. These responses were then challenged with lasmiditan. We explored the tissue distribution of mRNA for 5-HT1F receptors in human post-mortem tissue and of several 5-HT1 receptor subtypes in specific tissue beds. KEY RESULTS: Lasmiditan dose-dependently reduced trigeminovascular activation in a preclinical model of migraine. Lasmiditan also reduced superior salivatory nucleus-evoked activation of the trigeminal-autonomic reflex, but had no effect on cranial autonomic activation. mRNA profiling in human tissue showed expression of the 5-HT1F receptor in several structures relevant for migraine and cluster headache. CONCLUSION AND IMPLICATIONS: Our data suggest that lasmiditan acts, at least in part, as an anti-migraine agent by reducing trigeminovascular activation. Furthermore, our results highlight a clear action for lasmiditan in a preclinical model of cluster headache. Given the proven translational efficacy of this model, our data support the potential utility of lasmiditan as a therapeutic option for the acute treatment of cluster headache attacks. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.


Assuntos
Cefaleia Histamínica , Transtornos de Enxaqueca , Animais , Benzamidas , Cefaleia Histamínica/tratamento farmacológico , Transtornos de Enxaqueca/tratamento farmacológico , Nociceptividade , Piperidinas , Piridinas , RNA Mensageiro , Ratos , Receptores de Serotonina , Serotonina , Receptor 5-HT1F de Serotonina
9.
J Psychiatr Res ; 143: 50-53, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450525

RESUMO

Sexual dysfunction is one of the most bothersome adverse drug effects seen in men and women taking antipsychotic medications and negatively impacts medication adherence. Antipsychotic medications are associated with hyperprolactinemia, which is known to contribute to sexual and hormonal side effects in men. However, testosterone also plays a key factor in male sexual function and may be affected by abnormal prolactin levels through gonadotropin-releasing hormone inhibition. This study was a pilot study undertaken to assess the prevalence of elevations in prolactin levels, related reductions in testosterone levels, associated symptoms of sexual dysfunction and breast abnormalities in male participants, and related distress to these symptoms in men taking prolactin-elevating antipsychotic medications. The study was conducted as a cross-sectional study. Our results showed a notably high prevalence of sexual side effects in this population, with gynecomastia occurring in 50% and penile-related symptoms in 73%. Additionally, we found elevated prolactin levels in 68% and low testosterone levels in 55% of our participants. This study was limited in its power due to a small sample size of 22 men and the lack of a control group. Still, even in our relatively small sample, we see a trend of hyperprolactinemia being associated with low testosterone and a significant correlation of low testosterone levels with penile-related symptoms. This suggests that testosterone plays a major role in the sexual side effects reported by men taking antipsychotics, although larger studies are needed to further categorize this relationship.


Assuntos
Antipsicóticos , Esquizofrenia , Antipsicóticos/efeitos adversos , Estudos Transversais , Feminino , Humanos , Masculino , Projetos Piloto , Prolactina , Esquizofrenia/tratamento farmacológico , Testosterona
10.
J Headache Pain ; 21(1): 71, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522164

RESUMO

Migraine is a leading cause of disability worldwide, but it is still underdiagnosed and undertreated. Research on the pathophysiology of this neurological disease led to the discovery that calcitonin gene-related peptide (CGRP) is a key neuropeptide involved in pain signaling during a migraine attack. CGRP-mediated neuronal sensitization and glutamate-based second- and third-order neuronal signaling may be an important component involved in migraine pain. The activation of several serotonergic receptor subtypes can block the release of CGRP, other neuropeptides, and neurotransmitters, and can relieve the symptoms of migraine. Triptans were the first therapeutics developed for the treatment of migraine, working through serotonin 5-HT1B/1D receptors. The discovery that the serotonin 1F (5-HT1F) receptor was expressed in the human trigeminal ganglion suggested that this receptor subtype may have a role in the treatment of migraine. The 5-HT1F receptor is found on terminals and cell bodies of trigeminal ganglion neurons and can modulate the release of CGRP from these nerves. Unlike 5-HT1B receptors, the activation of 5-HT1F receptors does not cause vasoconstriction.The potency of different serotonergic agonists towards 5-HT1F was correlated in an animal model of migraine (dural plasma protein extravasation model) leading to the development of lasmiditan. Lasmiditan is a newly approved acute treatment for migraine in the United States and is a lipophilic, highly selective 5-HT1F agonist that can cross the blood-brain barrier and act at peripheral nervous system (PNS) and central nervous system (CNS) sites.Lasmiditan activation of CNS-located 5-HT1F receptors (e.g., in the trigeminal nucleus caudalis) could potentially block the release of CGRP and the neurotransmitter glutamate, thus preventing and possibly reversing the development of central sensitization. Activation of 5-HT1F receptors in the thalamus can block secondary central sensitization of this region, which is associated with progression of migraine and extracephalic cutaneous allodynia. The 5-HT1F receptors are also elements of descending pain modulation, presenting another site where lasmiditan may alleviate migraine. There is emerging evidence that mitochondrial dysfunction might be implicated in the pathophysiology of migraine, and that 5-HT1F receptors can promote mitochondrial biogenesis. While the exact mechanism is unknown, evidence suggests that lasmiditan can alleviate migraine through 5-HT1F agonist activity that leads to inhibition of neuropeptide and neurotransmitter release and inhibition of PNS trigeminovascular and CNS pain signaling pathways.


Assuntos
Benzamidas/farmacologia , Transtornos de Enxaqueca/fisiopatologia , Piperidinas/farmacologia , Piridinas/farmacologia , Receptores de Serotonina , Agonistas do Receptor de Serotonina/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Humanos , Neurônios/metabolismo , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/fisiopatologia , Triptaminas , Vasoconstrição/efeitos dos fármacos , Receptor 5-HT1F de Serotonina
11.
Cephalalgia ; 40(9): 903-912, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32580575

RESUMO

BACKGROUND: Medication overuse is a significant issue that complicates the treatment of headache disorders. The most effective medications for the acute treatment of migraine all have the capacity to induce medication overuse headache (MOH). Novel acute migraine-specific treatments are being developed. However, because the mechanism(s) underlying medication overuse headache are not well understood, it is difficult to predict whether any particular acute medication will induce MOH in susceptible individuals. LY573144 (lasmiditan), a 5-HT1F receptor agonist, has recently been shown to be effective in the acute treatment of migraine in phase 3 trials. The aim of this study is to determine whether frequent administration of lasmiditan induces behaviors consistent with MOH in a pre-clinical rat model. METHODS: Sprague Dawley rats were administered six doses of lasmiditan (10 mg/kg), sumatriptan (10 mg/kg), or sterile water orally over 2 weeks and cutaneous allodynia was evaluated regularly in the periorbital and hindpaw regions using von Frey filaments. Testing continued until mechanosensitivity returned to baseline levels. Rats were then submitted to bright light stress (BLS) or nitric oxide (NO) donor administration and were again evaluated for cutaneous allodynia in the periorbital and hindpaw regions hourly for 5 hours. RESULTS: Both lasmiditan and sumatriptan exhibited comparable levels of drug-induced cutaneous allodynia in both the periorbital and hindpaw regions, which resolved after cessation of drug administration. Both lasmiditan and sumatriptan pre-treatment resulted in cutaneous allodynia that was evoked by either BLS or NO donor. CONCLUSIONS: In a pre-clinical rat model of MOH, oral lasmiditan, like sumatriptan, induced acute transient cutaneous allodynia in the periorbital and hindpaw regions that after resolution could be re-evoked by putative migraine triggers. These results suggest that lasmiditan has the capacity to induce MOH through persistent latent peripheral and central sensitization mechanisms.


Assuntos
Analgésicos/toxicidade , Benzamidas/toxicidade , Transtornos da Cefaleia Secundários/induzido quimicamente , Hiperalgesia/induzido quimicamente , Piperidinas/toxicidade , Piridinas/toxicidade , Agonistas do Receptor de Serotonina/toxicidade , Animais , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Modelos Animais de Doenças , Ratos , Ratos Sprague-Dawley , Sumatriptana/toxicidade
12.
Pain ; 161(5): 1092-1099, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31977930

RESUMO

Migraine headache pathophysiology involves trigeminovascular system activation, calcitonin gene-related peptide (CGRP) release, and dysfunctional nociceptive transmission. Triptans are 5-HT1B/1D/(1F) receptor agonists that prejunctionally inhibit trigeminal CGRP release, but their vasoconstrictor properties limit their use in migraine patients with cardiovascular disease. By contrast, lasmiditan is a novel antimigraine and selective 5-HT1F receptor agonist devoid of vasoconstrictor properties. On this basis, this study has investigated the modulation of trigeminal CGRP release by lasmiditan. For this purpose, we have comparatively analysed the inhibition of several components of the trigeminovascular system induced by lasmiditan and sumatriptan through: ex vivo KCl-induced CGRP release from isolated dura mater, trigeminal ganglion, and trigeminal nucleus caudalis of mice; and in vivo dural vasodilation in the rat closed-cranial window model induced by endogenous (electrical stimulation and capsaicin) and exogenous CGRP. The ex vivo release of CGRP was similarly inhibited by sumatriptan and lasmiditan in all trigeminovascular system components. In vivo, intravenous (i.v.) lasmiditan or higher doses of sumatriptan significantly attenuated the vasodilatory responses to endogenous CGRP release, but not exogenous CGRP effects. These data suggest that lasmiditan prejunctionally inhibits CGRP release in peripheral and central trigeminal nerve terminals. Because lasmiditan is a lipophilic drug that crosses the blood-brain barrier, additional central sites of action remain to be determined.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Animais , Benzamidas , Calcitonina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas , Piridinas , Ratos , Ratos Sprague-Dawley , Agonistas do Receptor de Serotonina
13.
Br J Pharmacol ; 176(24): 4681-4695, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31418454

RESUMO

BACKGROUND AND PURPOSE: Triptans are 5-HT1B/1D receptor agonists (that also display 5-HT1F receptor affinity) with antimigraine action, contraindicated in patients with coronary artery disease due to their vasoconstrictor properties. Conversely, lasmiditan was developed as an antimigraine 5-HT1F receptor agonist. To assess the selectivity and cardiovascular effects of lasmiditan, we investigated the binding, functional activity, and in vitro/in vivo vascular effects of lasmiditan and compared it to sumatriptan. EXPERIMENTAL APPROACH: Binding and second messenger activity assays of lasmiditan and other serotoninergic agonists were performed for human 5-HT1A , 5-HT1B , 5-HT1D , 5-ht1E , 5-HT1F , 5-HT2A , 5-HT2B , and 5-HT7 receptors, and the results were correlated with their potency to constrict isolated human coronary arteries (HCAs). Furthermore, concentration-response curves to lasmiditan and sumatriptan were performed in proximal and distal HCA, internal mammary, and middle meningeal arteries. Finally, anaesthetized female beagle dogs received i.v. infusions of lasmiditan or sumatriptan in escalating cumulative doses, and carotid and coronary artery diameters were measured. KEY RESULTS: Lasmiditan showed high selectivity for 5-HT1F receptors. Moreover, the functional potency of the analysed compounds to inhibit cAMP increase through 5-HT1B receptor activation positively correlated with their potency to contract HCA. In isolated human arteries, sumatriptan, but not lasmiditan, induced contractions. Likewise, in vivo, sumatriptan decreased coronary and carotid artery diameters at clinically relevant doses, while lasmiditan was devoid of vasoconstrictor activity at all doses tested. CONCLUSIONS AND IMPLICATIONS: Lasmiditan is a selective 5-HT1F receptor agonist devoid of vasoconstrictor activity. This may represent a cardiovascular safety advantage when compared to the triptans.


Assuntos
Benzamidas/farmacologia , Vasos Coronários/efeitos dos fármacos , Artérias Meníngeas/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Piperidinas/farmacologia , Piridinas/farmacologia , Receptores de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Vasoconstrição/efeitos dos fármacos , Animais , Ligação Competitiva , Células CHO , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Cricetulus , Cães , Relação Dose-Resposta a Droga , Feminino , Humanos , Técnicas In Vitro , Masculino , Artérias Meníngeas/metabolismo , Artérias Meníngeas/fisiopatologia , Ligação Proteica , Ensaio Radioligante , Sumatriptana/farmacologia , Receptor 5-HT1F de Serotonina
14.
Cephalalgia ; 39(10): 1241-1248, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31003588

RESUMO

OBJECTIVE: The objective of this investigation was to examine the distribution of galcanezumab and a control immunoglobulin 4 antibody containing the same constant regions as galcanezumab, into peripheral and central tissues. METHODS: Galcanezumab and a control immunoglobulin 4 antibody were radioiodinated with Iodine-125 to specific activities of 0.11 mCi/mg and 0.16 mCi/mg, respectively. At 24, 72, and 168 hours following subcutaneous injection of either antibody (4 mg/kg), cerebrospinal fluid and plasma were obtained followed by saline perfusion to remove residual blood and collection of selected tissues for determination of Iodine-125 content by gamma counting. RESULTS: The peak plasma levels of Iodine-125 galcanezumab and Iodine-125 control immunoglobulin 4 were observed at 72 hours and remained high at 168 hours post-dose. The rank order of tissue levels was dura mater = spleen > trigeminal ganglia ≫hypothalamus = spinal cord = prefrontal cortex = cerebellum. Iodine-125 galcanezumab levels in peripheral tissue (dura mater, spleen, and trigeminal ganglia) averaged 5% to 11% of plasma, whereas all of the central nervous system (CNS) tissue levels and the cerebrospinal fluid levels were < 0.4% of plasma. Distribution of the antibodies into the dura mater and the trigeminal ganglia was similar to that observed in the spleen and significantly greater than exposure in the brain or spinal cord. CONCLUSIONS: The central levels of galcanezumab were relatively low, which would favor the dura mater and trigeminal ganglia as sites of action for its observed clinical efficacy. However, a central site of action cannot be excluded.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Encéfalo/metabolismo , Medula Espinal/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Dura-Máter/metabolismo , Radioisótopos do Iodo , Masculino , Ratos , Ratos Sprague-Dawley , Baço/metabolismo , Distribuição Tecidual , Gânglio Trigeminal/metabolismo
15.
Headache ; 59(5): 659-681, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30982963

RESUMO

OBJECTIVE: The goal of this narrative review is to provide an overview of migraine pathophysiology, with an emphasis on the role of calcitonin gene-related peptide (CGRP) within the context of the trigeminovascular system. BACKGROUND: Migraine is a prevalent and disabling neurological disease that is characterized in part by intense, throbbing, and unilateral headaches. Despite recent advances in understanding its pathophysiology, migraine still represents an unmet medical need, as it is often underrecognized and undertreated. Although CGRP has been known to play a pivotal role in migraine for the last 2 decades, this has now received more interest spurred by the early clinical successes of drugs that block CGRP signaling in the trigeminovascular system. DESIGN: This narrative review presents an update on the role of CGRP within the trigeminovascular system. PubMed searches were used to find recent (ie, 2016 to November 2018) published articles presenting new study results. Review articles are also included not as primary references but to bring these to the attention of the reader. Original research is referenced in describing the core of the narrative, and review articles are used to support ancillary points. RESULTS: The trigeminal ganglion neurons provide the connection between the periphery, stemming from the interface between the primary afferent fibers of the trigeminal ganglion and the meningeal vasculature and the central terminals in the trigeminal nucleus caudalis. The neuropeptide CGRP is abundant in trigeminal ganglion neurons, and is released from the peripheral nerve and central nerve terminals as well as being secreted within the trigeminal ganglion. Release of CGRP from the peripheral terminals initiates a cascade of events that include increased synthesis of nitric oxide and sensitization of the trigeminal nerves. Secreted CGRP in the trigeminal ganglion interacts with adjacent neurons and satellite glial cells to perpetuate peripheral sensitization, and can drive central sensitization of the second-order neurons. A shift in central sensitization from activity-dependent to activity-independent central sensitization may indicate a mechanism driving the progression of episodic migraine to chronic migraine. The pathophysiology of cluster headache is much more obscure than that of migraine, but emerging evidence suggests that it may also involve hypersensitivity of the trigeminovascular system. Ongoing clinical studies with therapies targeted at CGRP will provide additional, valuable insights into the pathophysiology of this disorder. CONCLUSIONS: CGRP plays an essential role in the pathophysiology of migraine. Treatments that interfere with the functioning of CGRP in the peripheral trigeminal system are effective against migraine. Blocking sensitization of the trigeminal nerve by attenuating CGRP activity in the periphery may be sufficient to block a migraine attack. Additionally, the potential exists that this therapeutic strategy may also alleviate cluster headache as well.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Transtornos de Enxaqueca/metabolismo , Gânglio Trigeminal/metabolismo , Nervo Trigêmeo/metabolismo , Animais , Humanos , Transtornos de Enxaqueca/fisiopatologia , Neuroglia/metabolismo , Neurônios/metabolismo , Nociceptividade/fisiologia , Gânglio Trigeminal/fisiopatologia , Nervo Trigêmeo/fisiopatologia
16.
Cephalalgia ; 38(9): 1564-1574, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29103295

RESUMO

Background Many patients with migraines suffer from allergies and vice versa, suggesting a relationship between biological mechanisms of allergy and migraine. It was proposed many years ago that mast cells may be involved in the pathophysiology of migraines. We set out to investigate the relationship between mast cell activation and known neurogenic peptides related to migraine. Methods Cultured human mast cells were assayed for the presence of neuropeptides and their receptors at the RNA and protein level. Immunohistochemistry analyses were performed on tissue resident and cultured mast cells. Mast cell degranulation assays were performed and pituitary adenylate cyclase-activating polypeptide (PACAP) activity was measured with a bioassay. Results We found that cultured and tissue resident human mast cells contain PACAP in cytoplasmic granules. No other neurogenic peptide known to be involved in migraine was detected, nor did mast cells express the receptors for PACAP or other neurogenic peptides. Furthermore, mast cell degranulation through classic IgE-mediated allergic mechanisms led to the release of PACAP. The PACAP released from mast cells was biologically active, as demonstrated using PACAP receptor reporter cell lines. We confirmed existing literature that mast cell degranulation can also be induced by several neurogenic peptides, which also resulted in PACAP release. Conclusion Our data provides a potential biological explanation for the association between allergy and migraine by demonstrating the release of biologically active PACAP from mast cells.


Assuntos
Mastócitos/metabolismo , Transtornos de Enxaqueca/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Mastócitos/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia
17.
JAMA Neurol ; 75(2): 187-193, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29255900

RESUMO

Importance: Galcanezumab (LY2951742), a monoclonal antibody against calcitonin gene-related peptide (CGRP), is one of a novel class of new medicines for migraine prevention. Objective: To assess whether at least 1 dose of galcanezumab was superior to placebo for episodic migraine prevention. Design, Setting, and Participants: A randomized clinical trial was conducted in the United States (July 7, 2014, to August 19, 2015) in clinics of 37 licensed physicians with a specialty including, but not limited to, psychiatry, neurology, internal medicine, and primary care. Subcutaneous injections of galcanezumab, 5, 50, 120, or 300 mg, or placebo were given monthly during the 3-month treatment period. A total of 936 patients were assessed; 526 did not meet study entry or baseline criteria and 410 patients were randomly assigned to receive placebo or galcanezumab. Analyses were conducted on an intent-to-treat population, which included all patients who were randomized and received at least 1 dose of study drug. Interventions: Short-term migraine treatments were allowed as needed except for opioids or barbiturates. Main Outcomes and Measures: To determine if at least 1 of the 4 doses of galcanezumab tested was superior to placebo for migraine prevention measured by the mean change from baseline in the number of migraine headache days 9 weeks to 12 weeks after randomization. Results: Of the 936 patients assessed, 410 met entry criteria (aged 18-65 years with 4-14 migraine headache days per month and migraine onset prior to age 50 years) and were randomized to receive placebo or galcanezumab. For the primary end point, galcanezumab, 120 mg, significantly reduced migraine headache days compared with placebo (99.6% posterior probability -4.8 days; 90% BCI, -5.4 to -4.2 days vs 95% superiority threshold [Bayesian analysis] -3.7 days; 90% BCI, -4.1 to -3.2 days). Adverse events reported by 5% or more of patients in at least 1 galcanezumab dose group and more frequently than placebo included injection-site pain, upper respiratory tract infection, nasopharyngitis, dysmenorrhea, and nausea. Conclusions and Relevance: Monthly subcutaneous injections of galcanezumab, both 120 mg and 300 mg, demonstrated efficacy (repeated-measures analysis) for the preventive treatment of migraine and support further development in larger phase 3 studies. All dosages were safe and well tolerated for the preventive treatment of episodic migraine. Trial Registration: clinicaltrials.gov Identifier: NCT02163993.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Fatores Imunológicos/uso terapêutico , Transtornos de Enxaqueca/prevenção & controle , Resultado do Tratamento , Adolescente , Adulto , Idoso , Anticorpos Monoclonais Humanizados , Peptídeo Relacionado com Gene de Calcitonina/imunologia , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estados Unidos , Adulto Jovem
18.
J Med Chem ; 60(20): 8482-8514, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29016121

RESUMO

In an effort to identify new antidiabetic agents, we have discovered a novel family of (5-imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl]amine analogues which are inhibitors of human glycogen synthase kinase 3 (GSK3). We developed efficient synthetic routes to explore a wide variety of substitution patterns and convergently access a diverse array of analogues. Compound 1 (CHIR-911, CT-99021, or CHIR-73911) emerged from an exploration of heterocycles at the C-5 position, phenyl groups at C-4, and a variety of differently substituted linker and aminopyridine moieties attached at the C-2 position. These compounds exhibited GSK3 IC50s in the low nanomolar range and excellent selectivity. They activate glycogen synthase in insulin receptor-expressing CHO-IR cells and primary rat hepatocytes. Evaluation of lead compounds 1 and 2 (CHIR-611 or CT-98014) in rodent models of type 2 diabetes revealed that single oral doses lowered hyperglycemia within 60 min, enhanced insulin-stimulated glucose transport, and improved glucose disposal without increasing insulin levels.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Quinases da Glicogênio Sintase/antagonistas & inibidores , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacologia , Pirimidinas/farmacologia , Animais , Células CHO , Cromatografia Líquida de Alta Pressão , Cricetulus , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Humanos , Hipoglicemiantes/metabolismo , Espectrometria de Massas , Espectroscopia de Prótons por Ressonância Magnética , Pirimidinas/química , Pirimidinas/metabolismo , Ratos , Relação Estrutura-Atividade
19.
J Clin Endocrinol Metab ; 102(8): 3021-3028, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28605468

RESUMO

Background: XOMA 358 (X358) is a fully human monoclonal antibody to the insulin receptor that acts as a negative allosteric modulator of insulin signaling. It is being developed as a novel treatment of hyperinsulinemic hypoglycemia. This report describes pharmacokinetic (PK) and pharmacodynamic (PD) data from a first-in-human clinical trial. Methods: A double-blind, placebo-controlled, single-ascending-dose study was performed with 29 healthy adult males randomized to intravenous infusion of placebo or X358 at 0.1-, 0.3-, 1-, 3-, 6-, or 9-mg/kg dose levels. The primary objective was to assess safety and tolerability, and secondary objectives included PK and PD analyses. A short insulin tolerance test (ITT) was implemented in the 3- to 9-mg/kg dose cohorts at baseline and postinfusion. Results: There were no deaths, serious adverse events (AEs), or subject discontinuations due to AEs. There were no clinically meaningful safety findings. X358 exhibited dose-proportional PK with a half-life of 21 days. Dose-dependent elevations of circulating insulin levels, likely related to reduced insulin clearance via monoclonal antibody action at receptors, represented a sensitive biomarker of X358 exposure. X358-dependent increases in postprandial glucose levels and fasting homeostatic model assessment of insulin resistance values were observed and persisted for at least 1 week at the higher dose levels. In all the ITT cohorts, the slope for glucose lowering was substantially attenuated after X358 infusion of a similar magnitude, but with increasing duration with rising dose level. Conclusion: Single X358 infusions were well tolerated and resulted in a dose-dependent reduction in insulin sensitivity. Clinical development of X358 in hyperinsulinemic, hypoglycemic conditions is proceeding.


Assuntos
Anticorpos Monoclonais/farmacologia , Glicemia/efeitos dos fármacos , Hiperinsulinismo/tratamento farmacológico , Hipoglicemia/tratamento farmacológico , Período Pós-Prandial/efeitos dos fármacos , Receptor de Insulina/efeitos dos fármacos , Adolescente , Adulto , Regulação Alostérica , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados , Método Duplo-Cego , Jejum/metabolismo , Meia-Vida , Voluntários Saudáveis , Humanos , Hiperinsulinismo/complicações , Hipoglicemia/etiologia , Resistência à Insulina , Masculino , Receptor de Insulina/imunologia , Adulto Jovem
20.
Neuropsychopharmacology ; 42(9): 1825-1832, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28393896

RESUMO

Ibudilast, a nonselective phosphodiesterase inhibitor, is used clinically in Asia for the treatment of asthma and poststroke dizziness. Recent preclinical studies have suggested that it also inhibits glial cell activation in rodents, and may alter opioid-mediated effects, including analgesia and withdrawal symptoms. The effects of ibudilast on the abuse potential of opioids in humans are largely unknown. The present study was designed to examine the influence of ibudilast on subjective (including drug craving), reinforcing, and analgesic effects of oxycodone in human volunteers diagnosed with opioid dependence (equivalent to moderate-severe opioid use disorder). Non-treatment-seeking opioid-dependent male volunteers (n=11) underwent an in-patient detoxification with morphine, followed by maintenance on placebo (0 mg b.i.d.) and active ibudilast (50 mg b.i.d.). Under each maintenance dose, six experimental sample and choice sessions were completed involving oral oxycodone administration (0, 15, and 30 mg/70 kg, p.o.). Subjective effects of oxycodone and drug craving were measured with visual analog scales (VAS) and a Drug Effects Questionnaire. The cold pressor test was used to produce pain, and a modified progressive-ratio choice procedure was used to measure the reinforcing effects of oxycodone. Under the active ibudilast condition compared with the placebo condition, ratings of drug liking following 15 mg of oxycodone were decreased significantly. The mean drug breakpoint value was also significantly lower in the active vs the placebo ibudilast condition under the 15 mg oxycodone condition, but not significantly lower under the 30 mg oxycodone condition. Heroin craving was significantly reduced under active ibudilast vs placebo, and similar effects were observed for tobacco and cocaine craving. Furthermore, mean subjective ratings of pain were lower in the active ibudilast condition. Our data suggest that ibudilast may be useful for treating opioid use disorders and it may enhance the analgesic effects of oxycodone.


Assuntos
Analgésicos Opioides/administração & dosagem , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Oxicodona/administração & dosagem , Inibidores de Fosfodiesterase/uso terapêutico , Piridinas/uso terapêutico , Analgésicos Opioides/efeitos adversos , Fissura/efeitos dos fármacos , Heroína/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Morfina/administração & dosagem , Transtornos Relacionados ao Uso de Opioides/psicologia , Oxicodona/efeitos adversos , Dor/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA