Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Innate Immun ; : 1-21, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551129

RESUMO

Damage and disease of nerves activates the complement system. We demonstrated that activation of the terminal pathway of the complement system leads to the formation of the membrane attack complex (MAC) and delays regeneration in the peripheral nervous system. Animals deficient in the complement component C6 showed improved recovery after neuronal trauma. Thus, inhibitors of the MAC might be of therapeutic use in neurological disease. Here, we describe the development, structure, mode of action, and properties of a novel therapeutic monoclonal antibody, CP010, against C6 that prevents formation of the MAC in vivo. The monoclonal antibody is humanized and specific for C6 and binds to an epitope in the FIM1-2 domain of human and primate C6 with sub-nanomolar affinity. Using biophysical and structural studies, we show that the anti-C6 antibody prevents the interaction between C6 and C5/C5b by blocking the C6 FIM1-2:C5 C345c axis. Systemic administration of the anti-C6 mAb caused complete depletion of free C6 in circulation in transgenic rats expressing human C6 and thereby inhibited MAC formation. The antibody prevented disease in experimental autoimmune myasthenia gravis and ameliorated relapse in chronic relapsing experimental autoimmune encephalomyelitis in human C6 transgenic rats. CP010 is a promising complement C6 inhibitor that prevents MAC formation. Systemic administration of this C6 monoclonal antibody has therapeutic potential in the treatment of neuronal disease.

2.
Kidney Int ; 99(2): 396-404, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33129896

RESUMO

C3 glomerulopathy is characterized by accumulation of complement C3 within glomeruli. Causes include, but are not limited to, abnormalities in factor H, the major negative regulator of the complement alternative pathway. Factor H-deficient (Cfh-/-) mice develop C3 glomerulopathy together with a reduction in plasma C3 levels. Using this model, we assessed the efficacy of two fusion proteins containing the factor H alternative pathway regulatory domains (FH1-5) linked to either a non-targeting mouse immunoglobulin (IgG-FH1-5) or to an anti-mouse properdin antibody (Anti-P-FH1-5). Both proteins increased plasma C3 and reduced glomerular C3 deposition to an equivalent extent, suggesting that properdin-targeting was not required for FH1-5 to alter C3 activation in either plasma or glomeruli. Following IgG-FH1-5 administration, plasma C3 levels temporally correlated with changes in factor B levels whereas plasma C5 levels correlated with changes in plasma properdin levels. Notably, the increases in plasma C5 and properdin levels persisted for longer than the increases in C3 and factor B. In Cfh-/- mice IgG-FH1-5 reduced kidney injury during accelerated serum nephrotoxic nephritis. Thus, our data demonstrate that IgG-FH1-5 restored circulating alternative pathway activity and reduced glomerular C3 deposition in Cfh-/- mice and that plasma properdin levels are a sensitive marker of C5 convertase activity in factor H deficiency. The immunoglobulin conjugated FH1-5 protein, through its comparatively long plasma half-life, may be a potential therapy for C3 glomerulopathy.


Assuntos
Complemento C3 , Properdina , Animais , Complemento C3/genética , Convertases de Complemento C3-C5 , Complemento C5 , Fator H do Complemento/genética , Via Alternativa do Complemento , Imunoglobulina G , Camundongos , Properdina/genética
3.
Cell Rep ; 22(11): 2818-2826, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29539412

RESUMO

Mitochondrial disease may be caused by mutations in the protein-coding genes of the mitochondrial genome. A promising strategy for treating such diseases is allotopic expression-the translation of wild-type copies of these proteins in the cytosol, with subsequent translocation into the mitochondria, resulting in rescue of mitochondrial function. In this paper, we develop an automated, quantitative, and unbiased screening platform to evaluate protein localization and mitochondrial morphology. This platform was used to compare 31 mitochondrial targeting sequences and 15 3' UTRs in their ability to localize up to 9 allotopically expressed proteins to the mitochondria and their subsequent impact on mitochondrial morphology. Taking these two factors together, we synthesized chemically modified mRNAs that encode for an optimized allotopic expression construct for mtATP6. These mRNAs were able to functionally rescue a cell line harboring the 8993T > G point mutation in the mtATP6 gene.


Assuntos
Proteínas Mitocondriais/metabolismo , RNA Mensageiro/metabolismo , Humanos , Mutação , Transfecção
4.
BMC Res Notes ; 11(1): 205, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587845

RESUMO

OBJECTIVE: Mitochondrial diseases are a group of devastating disorders for which there is no transformative cure. The majority of therapies for mitochondrial disease-approved, previously tested, or currently in development-are small molecules. The implementation of better cell-based models of mitochondrial disease can accelerate and improve the accuracy of small molecule drug discovery. The objective of this study is to evaluate the use of patient-derived lymphoblastoid cell lines for small molecule research in mitochondrial disease. RESULTS: Five lymphoblastoid cell lines derived from mitochondrial disease patients harboring point mutations in mtND1, mtND4, or mtATP6 were characterized in two high throughput assays assessing mitochondrial function. In a pilot "clinical trial in a dish" experiment, the efficacy of idebenone-an approved therapy for mitochondrial disease-on the lymphoblastoid cell lines was tested. Idebenone increased the basal respiration of all lymphoblastoid cell lines except those harboring the 8993T>G point mutation in mtATP6. Our results posit lymphoblastoid cell lines as a strong model for mitochondrial disease research with small molecules and have implications for the clinical efficacy of idebenone.


Assuntos
DNA Mitocondrial/genética , Descoberta de Drogas/métodos , Doenças Mitocondriais/genética , Mutação Puntual , Adulto , Linhagem Celular , Criança , Pré-Escolar , Feminino , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/patologia , Consumo de Oxigênio/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/uso terapêutico , Ubiquinona/análogos & derivados , Ubiquinona/uso terapêutico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA