Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Fungi (Basel) ; 10(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921370

RESUMO

The inoculation of Epichloë endophytes into modern cereals, resulting in systemic infection, depends on the genetics of both the host and the endophyte strain deployed. Until very recently, the only modern cereal to have been infected with Epichloë, in which normal phenotype seed-transmitted associations were achieved, is rye (Secale cereale). Whilst minor in-roads have been achieved in infecting hexaploid wheat (Triticum aestivum), the phenotypes of these associations have all been extremely poor, including host death and stunting. To identify host genetic factors that may impact the compatibility of Epichloë infection in wheat, wheat-alien chromosome addition/substitution lines were inoculated with Epichloë, and the phenotypes of infected plants were assessed. Symbioses were identified whereby infected wheat plants were phenotypically like uninfected controls. These plants completed their full lifecycle, including the vertical transmission of Epichloë into the next generation of grain, and represent the first ever compatible wheat-Epichloë associations to be created.

2.
Plant Cell Environ ; 47(8): 2865-2878, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38616528

RESUMO

A trade-off between growth and defence against biotic stresses is common in plants. Fungal endophytes of the genus Epichloë may relieve this trade-off in their host grasses since they can simultaneously induce plant growth and produce antiherbivore alkaloids that circumvent the need for host defence. The Epichloë ability to decouple the growth-defence trade-off was evaluated by subjecting ryegrass with and without Epichloë endophytes to an exogenous treatment with gibberellin (GA) followed by a challenge with Rhopalosiphum padi aphids. In agreement with the endophyte-mediated trade-off decoupling hypothesis, the GA-derived promotion of plant growth increased the susceptibility to aphids in endophyte-free plants but did not affect the insect resistance in endophyte-symbiotic plants. In line with the unaltered insect resistance, the GA treatment did not reduce the concentration of Epichloë-derived alkaloids. The Epichloë mycelial biomass was transiently increased by the GA treatment but at the expense of hyphal integrity. The response of the phyllosphere bacterial microbiota to both GA treatment and Epichloë was also evaluated. Only Epichloë, and not the GA treatment, altered the composition of the phyllosphere microbiota and the abundance of certain bacterial taxa. Our findings clearly demonstrate that Epichloë does indeed relieve the plant growth-defence trade-off.


Assuntos
Endófitos , Epichloe , Giberelinas , Herbivoria , Lolium , Microbiota , Simbiose , Endófitos/fisiologia , Animais , Epichloe/fisiologia , Lolium/microbiologia , Lolium/crescimento & desenvolvimento , Lolium/fisiologia , Giberelinas/metabolismo , Afídeos/fisiologia , Bactérias , Alcaloides/metabolismo , Defesa das Plantas contra Herbivoria
3.
BMC Plant Biol ; 23(1): 636, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072924

RESUMO

BACKGROUND: Commercial cultivars of perennial ryegrass infected with selected Epichloë fungal endophytes are highly desirable in certain pastures as the resulting mutualistic association has the capacity to confer agronomic benefits (such as invertebrate pest deterrence) largely due to fungal produced secondary metabolites (e.g., alkaloids). In this study, we investigated T2 segregating populations derived from two independent transformation events expressing diacylglycerol acyltransferase (DGAT) and cysteine oleosin (CO) genes designed to increase foliar lipid and biomass accumulation. These populations were either infected with Epichloë festucae var. lolii strain AR1 or Epichloë sp. LpTG-3 strain AR37 to examine relationships between the introduced trait and the endophytic association. Here we report on experiments designed to investigate if expression of the DGAT + CO trait in foliar tissues of perennial ryegrass could negatively impact the grass-endophyte association and vice versa. Both endophyte and plant characters were measured under controlled environment and field conditions. RESULTS: Expected relative increases in total fatty acids of 17-58% accrued as a result of DGAT + CO expression with no significant difference between the endophyte-infected and non-infected progeny. Hyphal growth in association with DGAT + CO expression appeared normal when compared to control plants in a growth chamber. There was no significant difference in mycelial biomass for both strains AR1 and AR37, however, Epichloë-derived alkaloid concentrations were significantly lower on some occasions in the DGAT + CO plants compared to the corresponding null-segregant progenies, although these remained within the reported range for bioactivity. CONCLUSIONS: These results suggest that the mutualistic association formed between perennial ryegrass and selected Epichloë strains does not influence expression of the host DGAT + CO technology, but that endophyte performance may be reduced under some circumstances. Further investigation will now be required to determine the preferred genetic backgrounds for introgression of the DGAT + CO trait in combination with selected endophyte strains, as grass host genetics is a major determinant to the success of the grass-endophyte association in this species.


Assuntos
Alcaloides , Epichloe , Lolium , Endófitos/metabolismo , Lolium/genética , Epichloe/genética , Epichloe/metabolismo , Simbiose , Poaceae/metabolismo , Alcaloides/metabolismo , Lipídeos
5.
Front Plant Sci ; 14: 1258100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810388

RESUMO

Epichloë spp. often form mutualistic interactions with cool-season grasses, such as Lolium perenne. However, the molecular mechanisms underlying this interaction remain poorly understood. In this study, we employed reduced representation bisulfite sequencing method (epiGBS) to investigate the impact of the Epichloë sp. LpTG-3 strain AR37 on the methylome of L. perenne across multiple grass generations and under drought stress conditions. Our results showed that the presence of the endophyte leads to a decrease in DNA methylation across genomic features, with differentially methylated regions primarily located in intergenic regions and CHH contexts. The presence of the endophyte was consistently associated with hypomethylation in plants across generations. This research sheds new light on the molecular mechanisms governing the mutualistic interaction between Epichloë sp. LpTG-3 strain AR37 and L. perenne. It underscores the role of methylation changes associated with endophyte infection and suggests that the observed global DNA hypomethylation in L. perenne may be influenced by factors such as the duration of the endophyte-plant association and the accumulation of genetic and epigenetic changes over time.

6.
J Agric Food Chem ; 71(38): 13965-13978, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37704203

RESUMO

The various grass-induced epichloëcyclins of the Epichloë spp. are ribosomally synthesized and post-translationally modified peptides (RiPPs), produced as small, secreted cyclopeptides from a single gene, gigA. Here, four clustered and coregulated genes (gigA, gigB, gigC, and kexB) with predicted roles in epichloëcyclin production in Epichloë festucae were evaluated through gene disruption. Subsequent chemical analysis indicates that GigB is a DUF3328 domain-containing protein associated with cyclization of epichloëcyclins; GigC is a methyltransferase enzyme responsible for N-methylation of desmethylepichloëcyclins; and KexB is a subtilisin-like enzyme, partly responsible for the propeptide cleavage of epichloëcyclin intermediates. Symbiotic effects on the host phenotype were not observed for gigA, gigC, or kexB mutants, although ΔgigB infection correlated with increased host tiller height and biomass, while only ΔkexB exhibited an effect on endophyte morphology. Disrupting epichloëcyclin biosynthesis showed negligible influence on the biosynthesis of E. festucae-associated alkaloids. Epichloëcyclins may perform other secondary metabolism functions in Epichloë and other fungi.


Assuntos
Epichloe , Lolium , Lolium/metabolismo , Epichloe/genética , Epichloe/metabolismo , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Proteínas Fúngicas/metabolismo , Simbiose , Família Multigênica
7.
Front Neurosci ; 17: 1179276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397461

RESUMO

During type 1 diabetes, an autoimmune attack destroys pancreatic ß-cells leading to the inability to maintain glucose homeostasis. These ß-cells are neuroresponsive endocrine cells which normally secrete insulin partially in response to input from the vagus nerve. This neural pathway can be utilized as a point of therapeutic intervention by delivering exogenous stimulation to drive increased insulin secretion. In this study, a cuff electrode was implanted on the pancreatic branch of the vagus nerve just prior to pancreatic insertion in rats, and a continuous glucose meter was implanted into the descending aorta. Streptozotocin (STZ) was used to induce a diabetic state, and changes in blood glucose were assessed using various stimulation parameters. Stimulation driven changes in hormone secretion, pancreatic blood flow, and islet cell populations were assessed. We found increased changes in the rate of blood glucose change during stimulation which subsided after stimulation ended paired with increased concentration of circulating insulin. We did not observe increased pancreatic perfusion, which suggests that the modulation of blood glucose was due to the activation of b-cells rather than changes in the extra-organ transport of insulin. Pancreatic neuromodulation showed potentially protective effects by reducing deficits in islet diameter, and ameliorating insulin loss after STZ treatment.

8.
Am J Physiol Renal Physiol ; 325(2): F150-F163, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318991

RESUMO

Urothelial cells, which play an essential role in barrier function, are also thought to play a sensory role in bladder physiology by releasing signaling molecules in response to sensory stimuli that act upon adjacent sensory neurons. However, it is challenging to study this communication due to the overlap in receptor expression and proximity of urothelial cells to sensory neurons. To overcome this challenge, we developed a mouse model where we can directly stimulate urothelial cells using optogenetics. We crossed a uroplakin II (UPK2) cre mouse with a mouse that expresses the light-activated cation channel channelrhodopsin-2 (ChR2) in the presence of cre expression. Optogenetic stimulation of urothelial cells cultured from UPK2-ChR2 mice initiates cellular depolarization and release of ATP. Cystometry recordings demonstrated that optical stimulation of urothelial cells increases bladder pressure and pelvic nerve activity. Increases in bladder pressure persisted, albeit to a lesser extent, when the bladder was excised in an in vitro preparation. The P2X receptor antagonist PPADS significantly reduced optically evoked bladder contractions in vivo and ex vivo. Furthermore, corresponding nerve activity was also inhibited with PPADS. Our data suggest that urothelial cells can initiate robust bladder contractions via sensory nerve signaling or contractions through local signaling mechanisms. These data support a foundation of literature demonstrating communication between sensory neurons and urothelial cells. Importantly, with further use of these optogenetic tools, we hope to scrutinize this signaling mechanism, its importance for normal micturition and nociception, and how it may be altered in pathophysiological conditions.NEW & NOTEWORTHY Urothelial cells play a sensory role in bladder function. However, it has been particularly challenging to study this communication as both sensory neurons and urothelial cells express similar sensory receptors. Here we demonstrate using an optogenetic technique, that specific urothelial stimulation alone resulted in bladder contractions. This approach will have a long-lasting impact on how we study urothelial-to-sensory neuron communication and the changes that occur under disease conditions.


Assuntos
Optogenética , Bexiga Urinária , Camundongos , Animais , Bexiga Urinária/metabolismo , Pelve , Células Receptoras Sensoriais/metabolismo , Neurônios Aferentes/metabolismo , Células Epiteliais/metabolismo , Trifosfato de Adenosina/metabolismo , Urotélio/metabolismo
9.
J Fungi (Basel) ; 9(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36836305

RESUMO

Epichloë species form bioprotective endophytic symbioses with many cool-season grasses, including agriculturally important forage grasses. Despite its importance, relatively little is known about the molecular details of the interaction and the regulatory genes involved. VelA is a key global regulator in fungal secondary metabolism and development. In previous studies, we showed the requirement of velA for E. festucae to form a mutualistic interaction with Lolium perenne. We showed that VelA regulates the expression of genes encoding proteins involved in membrane transport, fungal cell wall biosynthesis, host cell wall degradation, and secondary metabolism, along with several small-secreted proteins in Epichloë festucae. Here, by a comparative transcriptomics analysis on perennial ryegrass seedlings and mature plants, which are endophyte free or infected with wild type (mutualistic interaction) or mutant ΔvelA E. festucae (antagonistic or incompatible interaction), regulatory effects of the endophytic interaction on perennial ryegrass development was studied. We show that ΔvelA mutant associations influence the expression of genes involved in primary metabolism, secondary metabolism, and response to biotic and abiotic stresses compared with wild type associations, providing an insight into processes defining mutualistic versus antagonistic interactions.

10.
Front Plant Sci ; 13: 1025698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340377

RESUMO

Asexual Epichloë are endophytic fungi that form mutualistic symbioses with cool-season grasses, conferring to their hosts protection against biotic and abiotic stresses. Symbioses are maintained between grass generations as hyphae are vertically transmitted from parent to progeny plants through seed. However, endophyte transmission to the seed is an imperfect process where not all seeds become infected. The mechanisms underpinning the varying efficiencies of seed transmission are poorly understood. Host gene expression in response to Epichloë sp. LpTG-3 strain AR37 was examined within inflorescence primordia and ovaries of high and low endophyte transmission genotypes within a single population of perennial ryegrass. A genome-wide association study was conducted to identify population-level single nucleotide polymorphisms (SNPs) and associated genes correlated with vertical transmission efficiency. For low transmitters of AR37, upregulation of perennial ryegrass receptor-like kinases and resistance genes, typically associated with phytopathogen detection, comprised the largest group of differentially expressed genes (DEGs) in both inflorescence primordia and ovaries. DEGs involved in signaling and plant defense responses, such as cell wall modification, secondary metabolism, and reactive oxygen activities were also abundant. Transmission-associated SNPs were associated with genes for which gene ontology analysis identified "response to fungus" as the most significantly enriched term. Moreover, endophyte biomass as measured by quantitative PCR of Epichloë non-ribosomal peptide synthetase genes, was significantly lower in reproductive tissues of low-transmission hosts compared to high-transmission hosts. Endophyte seed-transmission efficiency appears to be influenced primarily by plant defense responses which reduce endophyte colonization of host reproductive tissues.

11.
Adipocyte ; 11(1): 616-629, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36260113

RESUMO

Brown adipose tissue (BAT) generates heat through non-shivering thermogenesis, and increasing BAT amounts or activity could facilitate obesity treatment and provide metabolic benefits. In mice, BAT has been reported in perirenal, thoracic and cranial sites. Here, we describe new pelvic and lower abdominal BAT depots located around the urethra, internal reproductive and urinary tract organs and major lower pelvic blood vessels, as well as between adjacent muscles where the upper hind leg meets the abdominal cavity. Immunohistochemical, western blot and PCR analyses revealed that these tissues expressed BAT markers such as uncoupling protein 1 (UCP1) and CIDEA, but not white adipose markers, and ß3-adrenergic stimulation increased UCP1 amounts, a classic characteristic of BAT tissue. The newly identified BAT stores contained extensive sympathetic innervation with high mitochondrial density and multilocular lipid droplets similar to interscapular BAT. BAT repositories were present and functional neonatally, and showed developmental changes between the neonatal and adult periods. In summary, several new depots showing classical BAT characteristics are reported and characterized in the lower abdominal/pelvic region of mice. These BAT stores are likely significant metabolic regulators in the mouse and some data suggests that similar BAT depots may also exist in humans.


Assuntos
Tecido Adiposo Marrom , Termogênese , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Adrenérgicos/metabolismo , Pelve , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo
12.
Vet Anaesth Analg ; 49(6): 656-663, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36050209

RESUMO

OBJECTIVE: To investigate the injectate spread and nerve staining of ultrasound-guided erector spinae plane (ESP) injections at the thoracolumbar spine in canine cadavers. STUDY DESIGN: Prospective, randomized, descriptive, anatomic study. ANIMALS: A total of 15 canine cadavers. METHODS: The location of the medial and lateral branches of the dorsal branches of the spinal nerves (DBSN) from the tenth thoracic (T10) to the third lumbar vertebra (L3) were identified by dissection of three cadavers. ESP injections of dye (0.5 mL kg-1) were performed in seven cadavers using as landmarks the T12 transverse process (ESPTp) on one side and the lateral aspect of the T12 mammillary process (ESPMp) on the opposite side. Additionally, five cadavers were injected with dye (0.5 mL kg-1) bilaterally on the lateral aspect of the L2 mammillary process (ESPMp_L2). Nerve staining effect was analyzed after gross anatomic dissections. The number of stained nerves was analyzed using the Mann-Whitney U test. RESULTS: Gross anatomic dissections showed that the medial and lateral branches of the DBSN change their path in relation to the epaxial muscles caudal to T11. Approaches ESPTp and ESPMp at T12 stained 2 (0-2) and 3 (2-4) medial (p = 0.01) and 3 (3-4) and 2 (0-2) lateral (p = 0.03) branches, respectively. Injection ESPMp_L2 stained 3 (2-4) medial and 2 (0-3) lateral branches. Injections ESPMp and ESPMp_L2 produced a preferential cranial spread from the injection site. No ventral branches of the spinal nerves were stained with either technique. CONCLUSIONS AND CLINICAL RELEVANCE: These results suggest that the mammillary process should be used as anatomic landmark to perform ultrasound-guided ESP blocks in the thoracolumbar spine caudal to T11 when targeting the medial branches of the DBSN. Injections should be performed one spinal segment caudal to the level intended to desensitize.


Assuntos
Doenças do Cão , Bloqueio Nervoso , Cães , Animais , Bloqueio Nervoso/veterinária , Bloqueio Nervoso/métodos , Estudos Prospectivos , Músculos Paraespinais , Nervos Espinhais/diagnóstico por imagem , Cadáver , Ultrassonografia de Intervenção/veterinária , Ultrassonografia de Intervenção/métodos
13.
J Neuroinflammation ; 19(1): 228, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114540

RESUMO

BACKGROUND: Cerebral vasospasm (CV) can contribute to significant morbidity in subarachnoid hemorrhage (SAH) patients. A key unknown is how CV induction is triggered following SAH. METHODS: Human aneurysmal blood and cerebral spinal fluid were collected for evaluation. To confirm mechanism, c57/bl6 wild type and c57/bl6 IL-6 female knockout (KO) mice were utilized with groups: saline injected, SAH, SAH + IL-6 blockade, SAH IL-6 KO, SAH IL-6 KO + IL-6 administration, SAH + p-STAT3 inhibition. Dual-labeled microglia/myeloid mice were used to show myeloid diapedesis. For SAH, 50 µm blood was collected from tail puncture and administered into basal cisterns. IL-6 blockade was given at various time points. Various markers of neuroinflammation were measured with western blot and immunohistochemistry. Cerebral blood flow was also measured. Vasospasm was measured via cardiac injection of India ink/gelatin. Turning test and Garcia's modified SAH score were utilized. P < 0.05 was considered significant. RESULTS: IL-6 expression peaked 3 days following SAH (p < 0.05). Human IL-6 was increased in aneurysmal blood (p < 0.05) and in cerebral spinal fluid (p < 0.01). Receptor upregulation was periventricular and perivascular. Microglia activation following SAH resulted in increased caveolin 3 and myeloid diapedesis. A significant increase in BBB markers endothelin 1 and occludin was noted following SAH, but reduced with IL-6 blockade (p < 0.01). CV occurred 5 days post-SAH, but was absent in IL-6 KO mice and mitigated with IL-6 blockade (p < 0.05). IL-6 blockade, and IL-6 KO mitigated effects of SAH on cerebral blood flow (p < 0.05). SAH mice had impaired performance on turn test and poor modified Garcia scores compared to saline and IL-6 blockade. A distinct microglia phenotype was noted day 5 in the SAH group (overlap coefficients r = 0.96 and r = 0.94) for Arg1 and iNOS, which was altered by IL-6 blockade. Day 7, a significant increase in toll-like receptor 4 and Stat3 was noted. This was mitigated by IL-6 blockade and IL-6 KO, which also reduced Caspase 3 (p < 0.05). To confirm the mechanism, we developed a p-STAT3 inhibitor that targets the IL-6 pathway and this reduced NFΚB, TLR4, and nitrotyrosine (p < 0.001). Ventricular dilation and increased Tunel positivity was noted day 9, but resolved by IL-6 blockade (p < 0.05). CONCLUSION: Correlation between IL-6 and CV has been well documented. We show that a mechanistic connection exists via the p-STAT3 pathway, and IL-6 blockade provides benefit in reducing CV and its consequences mediated by myeloid cell origin diapedesis.


Assuntos
Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Animais , Caspase 3 , Caveolina 3 , Endotelina-1 , Feminino , Gelatina , Humanos , Interleucina-6 , Camundongos , Camundongos Knockout , Hemorragia Subaracnóidea/metabolismo , Receptor 4 Toll-Like , Vasoespasmo Intracraniano/tratamento farmacológico , Vasoespasmo Intracraniano/etiologia , Vasoespasmo Intracraniano/metabolismo
14.
Clin Neurol Neurosurg ; 220: 107355, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35785661

RESUMO

Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide known to be involved in the trigeminovascular system and to function as a potent vasodilator. Although it has emerged as a viable target for headache management with targeted treatments developed for migraine, a highly disabling neurovascular disorder, less is known about CGRP's role in other neurologic conditions such as traumatic brain injury and subarachnoid hemorrhage. The literature has shown that during these injury cascades, CGRP receptors are modulated in varying ways. Therefore, CGRP or its receptors might be viable targets to manage secondary injuries following acute brain injury. In this review, we highlight the pathophysiology of the CGRP pathway and its relation to migraine pathogenesis. Using these same principles, we assess the existing preclinical data for CGRP and its role in acute brain injury. The findings are promising, and set the basis for further work, with specific focus on the therapeutic benefit of CGRP modulation following neurologic injury.


Assuntos
Lesões Encefálicas , Transtornos de Enxaqueca , Peptídeo Relacionado com Gene de Calcitonina , Cefaleia , Humanos , Transtornos de Enxaqueca/tratamento farmacológico , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/uso terapêutico
15.
Microorganisms ; 10(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889134

RESUMO

Genotyping by sequencing (GBS) was used to reveal the inherent genetic variation within the haploid fungi Sarocladium zeae isolated from diverse Zea germplasm, including modern Zea mays and its wild progenitors-the teosintes. In accordance with broad host relationship parameters, GBS analysis revealed significant host lineages of S. zeae genetic diversity, indicating that S. zeae genetic variation may associate with different evolutionary histories of host species or varieties. Based on a recently identified PKS-NRPS gene responsible for pyrrocidine biosynthesis in S. zeae fungi, a novel PCR assay was developed to discriminate pyrrocidine-producing S. zeae strains. This molecular method for screening bioactive strains of S. zeae is complementary to other approaches, such as chemical analyses. An eGFP-labelled S. zeae strain was also developed to investigate the endophytic transmission of S. zeae in Z. mays seedlings, which has further improved our understanding of the transmission modes of S. zeae endophytes in maize tissues.

17.
G3 (Bethesda) ; 12(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35191483

RESUMO

Fungi from the genus Epichloë form systemic endobiotic infections of cool season grasses, producing a range of host-protective natural products in return for access to nutrients. These infections are asymptomatic during vegetative host growth, with associations between asexual Epichloë spp. and their hosts considered mutualistic. However, the sexual cycle of Epichloë spp. involves virulent growth, characterized by the envelopment and sterilization of a developing host inflorescence by a dense sheath of mycelia known as a stroma. Microscopic analysis of stromata revealed a dramatic increase in hyphal propagation and host degradation compared with asymptomatic tissues. RNAseq was used to identify differentially expressed genes in asymptomatic vs stromatized tissues from 3 diverse Epichloë-host associations. Comparative analysis identified a core set of 135 differentially expressed genes that exhibited conserved transcriptional changes across all 3 associations. The core differentially expressed genes more strongly expressed during virulent growth encode proteins associated with host suppression, digestion, adaptation to the external environment, a biosynthetic gene cluster, and 5 transcription factors that may regulate Epichloë stroma formation. An additional 5 transcription factor encoding differentially expressed genes were suppressed during virulent growth, suggesting they regulate mutualistic processes. Expression of biosynthetic gene clusters for natural products that suppress herbivory was universally suppressed during virulent growth, and additional biosynthetic gene clusters that may encode production of novel host-protective natural products were identified. A comparative analysis of 26 Epichloë genomes found a general decrease in core differentially expressed gene conservation among asexual species, and a specific decrease in conservation for the biosynthetic gene cluster expressed during virulent growth and an unusual uncharacterized gene.


Assuntos
Epichloe , Animais , Epichloe/genética , Estágios do Ciclo de Vida , Poaceae/genética , Simbiose/genética , Transcriptoma
18.
Brain ; 145(10): 3637-3653, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34957475

RESUMO

Patients with bi-allelic loss of function mutations in the voltage-gated sodium channel Nav1.7 present with congenital insensitivity to pain (CIP), whilst low threshold mechanosensation is reportedly normal. Using psychophysics (n = 6 CIP participants and n = 86 healthy controls) and facial electromyography (n = 3 CIP participants and n = 8 healthy controls), we found that these patients also have abnormalities in the encoding of affective touch, which is mediated by the specialized afferents C-low threshold mechanoreceptors (C-LTMRs). In the mouse, we found that C-LTMRs express high levels of Nav1.7. Genetic loss or selective pharmacological inhibition of Nav1.7 in C-LTMRs resulted in a significant reduction in the total sodium current density, an increased mechanical threshold and reduced sensitivity to non-noxious cooling. The behavioural consequence of loss of Nav1.7 in C-LTMRs in mice was an elevation in the von Frey mechanical threshold and less sensitivity to cooling on a thermal gradient. Nav1.7 is therefore not only essential for normal pain perception but also for normal C-LTMR function, cool sensitivity and affective touch.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Insensibilidade Congênita à Dor , Animais , Humanos , Camundongos , Mecanorreceptores , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Insensibilidade Congênita à Dor/genética , Sódio
19.
Fungal Biol ; 126(1): 35-46, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34930557

RESUMO

Apple scab, caused by the fungal pathogen Venturia inaequalis, is the most economically important disease of apple (Malus x domestica) worldwide. To develop durable control strategies against this disease, a better understanding of the genetic mechanisms underlying the growth, reproduction, virulence and pathogenicity of V. inaequalis is required. A major bottleneck for the genetic characterization of V. inaequalis is the inability to easily delete or disrupt genes of interest using homologous recombination. Indeed, no gene deletions or disruptions in V. inaequalis have yet been published. Using the melanin biosynthesis pathway gene trihydroxynaphthalene reductase (THN) as a target for inactivation, which has previously been shown to result in a light-brown colony phenotype when transcriptionally silenced using RNA interference, we show, for the first time, that the CRISPR-Cas9 gene editing system can be successfully applied to the apple scab fungus. More specifically, using a CRISPR-Cas9 single guide RNA (sgRNA) targeted to the THN gene, delivered by a single autonomously replicating Golden Gate-compatible plasmid, we were able to identify six of 36 stable transformants with a light-brown phenotype, indicating an ∼16.7% gene inactivation efficiency. Notably, of the six THN mutants, five had an independent mutation. As part of our pipeline, we also report a high-resolution melting (HRM) curve protocol for the rapid detection of CRISPR-Cas9 gene-edited mutants of V. inaequalis. This protocol identified a single base pair deletion mutation in a sample containing only 5% mutant genomic DNA, indicating high sensitivity for mutant screening. In establishing CRISPR-Cas9 as a tool for gene editing in V. inaequalis, we have provided a strong starting point for studies aiming to decipher gene function in this fungus. The associated HRM curve protocol will enable CRISPR-Cas9 transformants to be screened for gene inactivation in a high-throughput and low-cost manner, which will be particularly powerful in cases where the CRISPR-Cas9-mediated gene inactivation efficiency is low.


Assuntos
Ascomicetos , Malus , Ascomicetos/genética , Sistemas CRISPR-Cas , Fungos do Gênero Venturia , Edição de Genes , Malus/genética , Doenças das Plantas
20.
Front Fungal Biol ; 3: 944234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746172

RESUMO

Epichloë festucae var. lolii and Epichloë sp. LpTG-3 are filamentous fungal endophytes of perennial ryegrass (Lolium perenne) that have a substantial impact on New Zealand's agricultural economy by conferring biotic advantages to the host grass. Overall, Epichloë endophytes contribute NZ$200 million to the economy annually, with strain AR37 estimated to contribute NZ$3.6 billion to the New Zealand economy over a 20-year period. This strain produces secondary metabolites, including epoxyjanthitrems, which are a class of indole diterpenes, associated with the observed effects of AR37 on livestock and insect pests. Until very recently, AR37 was intractable to genetic modification but this has changed with the application of CRISPR-Cas9 based gene editing techniques. In this paper, gene inactivation by CRISPR-Cas9 was used to deconvolute the genetic basis for epoxyjanthitrem biosynthesis, including creating an AR37 strain that has been edited to remove the biosynthesis of all indole diterpenes. We show that gene editing of Epichloë can be achieved without off-target events or introduction of foreign DNA (footprint-less) through an AMA1-based plasmid that simultaneously expresses the CRISPR-Cas9 system and selectable marker. Genetic modification events in these transformants were investigated through genome sequencing and in planta chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA