Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 72(11): 3593-3608, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37526659

RESUMO

Reovirus, a naturally occurring oncolytic virus, initiates the lysis of tumor cells while simultaneously releasing tumor antigens or proapoptotic cytokines in the tumor microenvironment to augment anticancer immunity. However, reovirus has developed a strategy to evade antiviral immunity via its inhibitory effect on interferon production, which negatively affects the induction of antitumor immune responses. The mammalian adaptor protein Stimulator of Interferon Genes (STING) was identified as a key regulator that orchestrates immune responses by sensing cytosolic DNA derived from pathogens or tumors, resulting in the production of type I interferon. Recent studies reported the role of STING in innate immune responses to RNA viruses leading to the restriction of RNA virus replication. In the current study, we found that reovirus had a reciprocal reaction with a STING agonist regarding type I interferon responses in vitro; however, we found that the combination of reovirus and STING agonist enhanced anti-tumor immunity by enhancing cytotoxic T cell trafficking into tumors, leading to significant tumor regression and survival benefit in a syngeneic colorectal cancer model. Our data indicate the combination of reovirus and a STING agonist to enhance inflammation in the tumor microenvironment might be a strategy to improve oncolytic reovirus immunotherapy.


Assuntos
Neoplasias Colorretais , Interferon Tipo I , Reoviridae , Animais , Camundongos , Reoviridae/metabolismo , Imunidade Inata , Citocinas , Interferon Tipo I/metabolismo , Neoplasias Colorretais/terapia , Mamíferos/metabolismo , Microambiente Tumoral
2.
Viruses ; 15(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515160

RESUMO

Patients with stage IV gastric cancer suffer from dismal outcomes, a challenge especially in many Asian populations and for which new therapeutic options are needed. To explore this issue, we used oncolytic reovirus in combination with currently used chemotherapeutic drugs (irinotecan, paclitaxel, and docetaxel) for the treatment of gastric and other gastrointestinal cancer cells in vitro and in a mouse model. Cell viability in vitro was quantified by WST-1 assays in human cancer cell lines treated with reovirus and/or chemotherapeutic agents. The expression of reovirus protein and caspase activity was determined by flow cytometry. For in vivo studies, athymic mice received intratumoral injections of reovirus in combination with irinotecan or paclitaxel, after which tumor size was monitored. In contrast to expectations, we found that reoviral oncolysis was only poorly correlated with Ras pathway activation. Even so, the combination of reovirus with chemotherapeutic agents showed synergistic cytopathic effects in vitro, plus enhanced reovirus replication and apoptosis. In vivo experiments showed that reovirus alone can reduce tumor size and that the combination of reovirus with chemotherapeutic agents enhances this effect. Thus, we find that oncolytic reovirus therapy is effective against gastric cancer. Moreover, the combination of reovirus and chemotherapeutic agents synergistically enhanced cytotoxicity in human gastric cancer cell lines in vitro and in vivo. Our data support the use of reovirus in combination with chemotherapy in further clinical trials, and highlight the need for better biomarkers for reoviral oncolytic responsiveness.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Orthoreovirus , Reoviridae , Neoplasias Gástricas , Camundongos , Animais , Humanos , Irinotecano , Neoplasias Gástricas/terapia , Linhagem Celular Tumoral , Reoviridae/fisiologia , Paclitaxel
3.
Viruses ; 15(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515162

RESUMO

Oncolytic viruses (OVs) are an emerging cancer therapeutic that are intended to act by selectively targeting and lysing cancerous cells and by stimulating anti-tumour immune responses, while leaving normal cells mainly unaffected. Reovirus is a well-studied OV that is undergoing advanced clinical trials and has received FDA approval in selected circumstances. However, the mechanisms governing reoviral selectivity are not well characterised despite many years of effort, including those in our accompanying paper where we characterize pathways that do not consistently modulate reoviral cytolysis. We have earlier shown that reovirus is capable of infecting and lysing both certain types of cancer cells and also cancer stem cells, and here we demonstrate its ability to also infect and kill healthy pluripotent stem cells (PSCs). This led us to hypothesize that pathways responsible for stemness may constitute a novel route for the modulation of reoviral tropism. We find that reovirus is capable of killing both murine and human embryonic and induced pluripotent stem cells. Differentiation of PSCs alters the cells' reoviral-permissive state to a resistant one. In a breast cancer cell line that was resistant to reoviral oncolysis, induction of pluripotency programming rendered the cells permissive to cytolysis. Bioinformatic analysis indicates that expression of the Yamanaka pluripotency factors may be associated with regulating reoviral selectivity. Mechanistic insights from these studies will be useful for the advancement of reoviral oncolytic therapy.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Orthoreovirus , Reoviridae , Humanos , Animais , Camundongos , Reoviridae/fisiologia , Neoplasias/terapia , Vírus Oncolíticos/genética , Linhagem Celular Tumoral , Morte Celular
4.
Curr Pharm Des ; 26(32): 3939-3954, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32282295

RESUMO

IGF2BP3 (also known as IMP3, KOC), a member of the insulin-like growth factor mRNA-binding protein family (IMPs), has been a research target in recent studies of promoting embryo development and exacerbating cancer. IGF2BP3 is ubiquitously expressed in early embryogenesis stages but limited in postembryonic stages, which is important in many physiological aspects such as stem cell renewal, morphological development and metabolism. A large number of studies show that IGF2BP3 interacts with many kinds of non-coding RNAs and proteins to promote cancer cell proliferation and metastasis and inhibit cancer cell apoptosis. As IGF2BP3 is highly expressed in advanced cancers and associated with poor overall survival rates of patients, it may be a potential molecular marker in cancer diagnosis for the detection of cancerous tissues and an indicator of cancer stages. Therefore, anti-IGF2BP3 drugs or monoclonal antibodies are expected as new therapeutic methods in cancer treatment. This review summarizes recent findings among IGF2BP3, RNA and proteins in cancer processes, with a focus on its cancer-promoting mechanisms and potential application as a new biomarker for cancer diagnosis and treatment.


Assuntos
Carcinoma , Somatomedinas , Proliferação de Células , Humanos , RNA Mensageiro , Proteínas de Ligação a RNA/genética
5.
BMC Med Genomics ; 13(1): 59, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252754

RESUMO

BACKGROUND: Escherichia coli are mostly commensals but also contain pathogenic lineages. It is largely unclear whether the commensal E. coli as the potential origins of pathogenic lineages may consist of monophyletic or polyphyletic populations, elucidation of which is expected to lead to novel insights into the associations of E. coli diversity with human health and diseases. METHODS: Using genomic sequencing and pulsed field gel electrophoresis (PFGE) techniques, we analyzed E. coli from the intestinal microbiota of three groups of healthy individuals, including preschool children, university students, and seniors of a longevity village, as well as colorectal cancer (CRC) patients, to probe the commensal E. coli populations for their diversity. RESULTS: We delineated the 2280 fresh E. coli isolates from 185 subjects into distinct genome types (genotypes) by PFGE. The genomic diversity of the sampled E. coli populations was so high that a given subject may have multiple genotypes of E. coli, with the general diversity within a host going up from preschool children through university students to seniors. Compared to the healthy subjects, the CRC patients had the lowest diversity level among their E. coli isolates. Notably, E. coli isolates from CRC patients could suppress the growth of E. coli bacteria isolated from healthy controls under nutrient-limited culture conditions. CONCLUSIONS: The coexistence of multiple E. coli lineages in a host may help create and maintain a microbial environment that is beneficial to the host. As such, the low diversity of E. coli bacteria may be associated with unhealthy microenvironment in the intestine and hence facilitate the pathogenesis of diseases such as CRC.


Assuntos
Neoplasias Colorretais/patologia , DNA Bacteriano/análise , Infecções por Escherichia coli/complicações , Escherichia coli/classificação , Escherichia coli/genética , Variação Genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , China/epidemiologia , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/microbiologia , DNA Bacteriano/genética , Infecções por Escherichia coli/microbiologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Microambiente Tumoral , Adulto Jovem
6.
BMC Genomics ; 20(1): 930, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801462

RESUMO

BACKGROUND: Salmonella bongori infect mainly cold-blooded hosts, but infections by S. bongori in warm-blooded hosts have been reported. We hypothesized that S. bongori might have diverged into distinct phylogenetic lineages, with some being able to infect warm-blooded hosts. RESULTS: To inspect the divergence status of S. bongori, we first completely sequenced the parakeet isolate RKS3044 and compared it with other sequenced S. bongori strains. We found that RKS3044 contained a novel T6SS encoded in a pathogenicity island-like structure, in addition to a T6SS encoded in SPI-22, which is common to all S. bongori strains so far reported. This novel T6SS resembled the SPI-19 T6SS of the warm-blooded host infecting Salmonella Subgroup I lineages. Genomic sequence comparisons revealed different genomic sequence amelioration events among the S. bongori strains, including a unique CTAG tetranucleotide degeneration pattern in RKS3044, suggesting non-overlapping gene pools between RKS3044 and other S. bongori lineages/strains leading to their independent accumulation of genomic variations. We further proved the existence of a clear-cut genetic boundary between RKS3044 and the other S. bongori lineages/strains analyzed in this study. CONCLUSIONS: The warm-blooded host-infecting S. bongori strain RKS3044 has diverged with distinct genomic features from other S. bongori strains, including a novel T6SS encoded in a previously not reported pathogenicity island-like structure and a unique genomic sequence degeneration pattern. These findings alert cautions about the emergence of new pathogens originating from non-pathogenic ancestors by acquiring specific pathogenic traits.


Assuntos
Ilhas Genômicas , Periquitos/microbiologia , Salmonella/classificação , Sequenciamento Completo do Genoma/métodos , Animais , Evolução Molecular , Especiação Genética , Tamanho do Genoma , Genoma Bacteriano , Humanos , Filogenia , Salmonella/genética , Salmonella/patogenicidade , Fatores de Virulência/genética
7.
Mol Genet Genomics ; 294(3): 597-605, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30710177

RESUMO

Antimicrobial resistance makes pathogenic bacteria hard to control, but little is known about the general processes of resistance gain or loss. Here, we compared distinct S. typhimurium DT104 strains resistant to zero, two, five, or more of the tested antimicrobials. We found that common resistance phenotypes could be encoded by distinct genes, on SGI-1 or plasmid. We also demonstrated close clonality among all the tested non-resistant and differently resistant DT104 strains, demonstrating dynamic acquisition or loss (by total deletion or gradual decaying of multi-drug resistance gene clusters) of the genetic traits. These findings reflect convergent processes to make the bacteria resistant to multiple antimicrobials by acquiring the needed traits from stochastically available origins. When the antimicrobial stress is absent, the resistance genes may be dropped off quickly, so the bacteria can save the cost for maintaining unneeded genes. Therefore, this work reiterates the importance of strictly controlled use of antimicrobials.


Assuntos
Adaptação Fisiológica/genética , Farmacorresistência Bacteriana Múltipla/genética , Evolução Molecular , Salmonella typhimurium/genética , Estresse Fisiológico , Adaptação Fisiológica/efeitos dos fármacos , Antibacterianos/farmacologia , Sequência de Bases , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Genes Bacterianos/genética , Genoma Bacteriano/genética , Filogenia , Plasmídeos/classificação , Plasmídeos/genética , Salmonella typhimurium/classificação , Salmonella typhimurium/efeitos dos fármacos , Homologia de Sequência do Ácido Nucleico
8.
Front Oncol ; 9: 1570, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32083017

RESUMO

Ovarian Clear Cell Carcinoma (OCCC) displays distinctive clinical and molecular characteristics and confers the worst prognosis among all ovarian carcinoma histotypes when diagnosed at advanced stage, because of the lack of effective therapy. IGF2BP3 is an RNA binding protein that modulates gene expression by post-transcriptional action. In this study, we investigated the roles of IGF2BP3 in the progression of OCCC. We used 328 OCCCs from the AOVT (the Alberta Ovarian Tumor Type study) and the COEUR (the Canadian Ovarian Experimental Unified Resource) cohorts to elucidate the associations between IGF2BP3 expression and clinicopathological parameters, with positive IGF2BP3 expression defined as diffuse block staining, being more frequently observed at stage III (P = 0.0056) and significantly associated with unfavorable overall survival (HR = 1.59, 95% CI 1.09-2.33) in multivariate analysis. IGF2BP3 mRNA gene expression was markedly increased in OCCC cell lines compared to normal tissues such as ovarian surface epithelium. We chose two IGF2BP3-overexpressing cell lines ES2 and OVMANA for in vitro and in vivo knockdown experiments. The proliferation and viability of both cell lines were significantly inhibited by two IGF2BP3 siRNAs and similar suppression was observed in cell migration and invasion by Wound Healing and Transwell assays. The percentage of apoptotic cancer cells was enhanced by both IGF2BP3 siRNAs. In vivo experiments showed significantly reduced sizes of tumors when treated with IGF2BP3 siRNA compared to controls. Furthermore, cancer metastasis-indicators MMP2 and MMP9 proteins were down-regulated. In conclusion, our study shows that IGF2BP3 expression is a promising biomarker for prognostication of women diagnosed with OCCC with multiple effects on key cell functions, supporting its role as an important cellular regulator with potential oncogenic activity, and as a potential target for future intervention strategies.

9.
Viruses ; 10(8)2018 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-30103501

RESUMO

Oncolytic viruses show intriguing potential as cancer therapeutic agents. These viruses are capable of selectively targeting and killing cancerous cells while leaving healthy cells largely unaffected. The use of oncolytic viruses for cancer treatments in selected circumstances has recently been approved by the Food and Drug Administration (FDA) of the US and work is progressing on engineering viral vectors for enhanced selectivity, efficacy and safety. However, a better fundamental understanding of tumour and viral biology is essential for the continued advancement of the oncolytic field. This knowledge will not only help to engineer more potent and effective viruses but may also contribute to the identification of biomarkers that can determine which patients will benefit most from this treatment. A mechanistic understanding of the overlapping activity of viral and standard chemotherapeutics will enable the development of better combinational approaches to improve patient outcomes. In this review, we will examine each of the factors that contribute to productive viral infections in cancerous cells versus healthy cells. Special attention will be paid to reovirus as it is a well-studied virus and the only wild-type virus to have received orphan drug designation by the FDA. Although considerable insight into reoviral biology exists, there remain numerous deficiencies in our understanding of the factors regulating its successful oncolytic infection. Here we will discuss what is known to regulate infection as well as speculate about potential new mechanisms that may enhance successful replication. A joint appreciation of both tumour and viral biology will drive innovation for the next generation of reoviral mediated oncolytic therapy.


Assuntos
Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/fisiologia , Reoviridae/fisiologia , Animais , Ensaios Clínicos como Assunto , Vetores Genéticos , Humanos , Melanoma/terapia , Camundongos , Neoplasias/virologia , Produção de Droga sem Interesse Comercial , Estados Unidos , United States Food and Drug Administration , Replicação Viral
10.
Cancer Biol Ther ; 18(12): 990-999, 2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29173024

RESUMO

Ovarian cancer is the third most common cancer in the female reproductive organs and epithelial ovarian cancer has the highest lethality of all gynecological cancers. Pomegranate fruit juice (PFJ) has been shown to inhibit the growth of several types of cancer other than ovarian cancer. In this study, we exposed the ovarian cancer cell line A2780 to PFJ and two of its components (ellagic acid and luteolin). MTT and wound healing assays demonstrated that all three treatments suppressed the proliferation and migration of the ovarian cancer cells. In addition, western blotting and ELISA assays showed that the expression levels of MMP2 and MMP9 gradually decreased after treatment with increasing concentrations of ellagic acid and luteolin. To confirm our findings in the in vitro experiments, we used another ovarian cancer cell line, ES-2, in nude mice experiments. All three treatments inhibited tumor growth without obvious side-effects. Furthermore, compared with the control group, the expression levels of MMP2 and MMP9 were depressed. Ellagic acid induced a greater effect than luteolin, suggesting that ellagic acid might be a promising candidate for further preclinical testing for treatment of human ovarian cancer.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ácido Elágico/administração & dosagem , Luteolina/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ácido Elágico/química , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Luteolina/química , Lythraceae/química , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Camundongos , Metástase Neoplásica , Neoplasias Ovarianas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Sci Rep ; 7(1): 10985, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887484

RESUMO

When bacteria diverge, they need to adapt to the new environments, such as new hosts or different tissues of the same host, by accumulating beneficial genomic variations, but a general scenario is unknown due to the lack of appropriate methods. Here we profiled the ACTAGT sequence and its degenerated forms (i.e., hexa-nucleotide sequences with one of the six nucleotides different from ACTAGT) in Salmonella to estimate the nucleotide amelioration processes of bacterial genomes. ACTAGT was mostly located in coding sequences but was also found in several intergenic regions, with its degenerated forms widely scattered throughout the bacterial genomes. We speculated that the distribution of ACTAGT and its degenerated forms might be lineage-specific as a consequence of different selection pressures imposed on ACTAGT at different genomic locations (in genes or intergenic regions) among different Salmonella lineages. To validate this speculation, we modelled the secondary structures of the ACTAGT-containing sequences conserved across Salmonella and many other enteric bacteria. Compared to ACTAGT at conserved regions, the degenerated forms were distributed throughout the bacterial genomes, with the degeneration patterns being highly similar among bacteria of the same phylogenetic lineage but radically different across different lineages. This finding demonstrates biased amelioration under distinct selection pressures among the bacteria and provides insights into genomic evolution during bacterial divergence.


Assuntos
Genes Bacterianos , Salmonella/genética , Substituição de Aminoácidos , Escherichia coli/genética , Evolução Molecular , Variação Genética , Genômica , Conformação de Ácido Nucleico , Salmonella/classificação , Seleção Genética
12.
Cell Oncol (Dordr) ; 40(6): 549-561, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28776259

RESUMO

BACKGROUND: Previously, it has been found that the cancer upregulated gene 2 (CUG2) and the epidermal growth factor receptor (EGFR) both contribute to drug resistance of cancer cells. Here, we explored whether CUG2 may exert its anticancer drug resistance by increasing the expression of EGFR. METHODS: EGFR expression was assessed using Western blotting, immunofluorescence and capacitance assays in A549 lung cancer and immortalized bronchial BEAS-2B cells, respectively, stably transfected with a CUG2 expression vector (A549-CUG2; BEAS-CUG2) or an empty control vector (A549-Vec; BEAS-Vec). After siRNA-mediated EGFR, Stat1 and HDAC4 silencing, antioxidant and multidrug resistance protein and mRNA levels were assessed using Western blotting and RT-PCR. In addition, the respective cells were treated with doxorubicin after which apoptosis and reactive oxygen species (ROS) levels were measured. Stat1 acetylation was assessed by immunoprecipitation. RESULTS: We found that exogenous CUG2 overexpression induced EGFR upregulation in A549 and BEAS-2B cells, whereas EGFR silencing sensitized these cells to doxorubicin-induced apoptosis. In addition, we found that exogenous CUG2 overexpression reduced the formation of ROS during doxorubicin treatment by enhancing the expression of antioxidant and multidrug resistant proteins such as MnSOD, Foxo1, Foxo4, MRP2 and BCRP, whereas EGFR silencing congruently increased the levels of ROS by decreasing the expression of these proteins. We also found that EGFR silencing and its concomitant Akt, ERK, JNK and p38 MAPK inhibition resulted in a decreased Stat1 phosphorylation and, thus, a decreased activation. Since also acetylation can affect Stat1 activation via a phospho-acetyl switch, HDAC inhibition may sensitize cells to doxorubicin-induced apoptosis. Interestingly, we found that exogenous CUG2 overexpression upregulated HDAC4, but not HDAC2 or HDAC3. Conversely, we found that HDAC4 silencing sensitized the cells to doxorubicin resistance by decreasing Stat1 phosphorylation and EGFR expression, thus indicating an interplay between HDAC4, Stat1 and EGFR. CONCLUSION: Taken together, we conclude that CUG2-induced EGFR upregulation confers doxorubicin resistance to lung (cancer) cells through Stat1-HDAC4 signaling.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Doxorrubicina/farmacologia , Receptores ErbB/metabolismo , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Fator de Transcrição STAT1/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilases/genética , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Repressoras/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
13.
J Ovarian Res ; 10(1): 49, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28738876

RESUMO

BACKGROUND: Ovarian cancer is one of the three leading gynecological malignancies, characterized by insidious growth, highly frequent metastasis, and quick development of drug resistance. As a result, this disease has low 5-year survival rates. Estrogen receptor inhibitors were commonly used for the treatment, but only 7% to 18% of patients respond to anti-estrogen therapies. Therefore, more effective therapies to inhibit estrogen-related tumors are urgently needed. Recently, phytoestrogens, such as lignans with estrogen-like biological activities, have attracted attention for their potential effects in the prevention or treatment of estrogen-related diseases. Enterodiol (END) and enterolactone (ENL) are mammalian lignans, which can reduce the risk of various cancers. However, the effects of END and ENL on ovarian cancer are not adequately documented. METHODS: We used in vitro assays on the ES-2 cell line to evaluate the inhibiting effects of END and ENL on ovarian cancer cell proliferation, invasion and migration ability and in vivo xenograft experiments on nude mice to validate the anticancer effects of END and ENL. RESULTS: The in vitro assays demonstrated that high-dose END and ENL could obviously inhibit ovarian malignant properties, including cancerous proliferation, invasion, and metastasis. Compared to END, ENL behaved in a better time-dose dependent manner on the cancer cells. The in vivo experiments showed that END (1 mg/kg), ENL (1 mg/kg) and ENL (0.1 mg/kg) suppressed tumor markedly, and there were statistically significant differences between the experimental and control groups in tumor weight and volume. Compared to END, which have serious side effects to the animals at high concentration such as 1 mg/kg, ENL had higher anticancer activities and less side effects in the animals than END at the same concentrations, so it would be a better candidate for drug development. CONCLUSION: END and ENL both have potent inhibitory effects on ovarian cancer but ENL possesses a more effective anti-cancer capability and less side effects than END. Findings in this work provide novel insights into ovarian cancer therapeutics with phytoestrogens and encourage their clinical applications.


Assuntos
4-Butirolactona/análogos & derivados , Antineoplásicos/uso terapêutico , Lignanas/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Fitoestrógenos/uso terapêutico , 4-Butirolactona/farmacologia , 4-Butirolactona/uso terapêutico , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Lignanas/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Ovarianas/patologia , Fitoestrógenos/farmacologia , Carga Tumoral/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
14.
Sci Rep ; 7: 43565, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262684

RESUMO

Highly conserved short sequences help identify functional genomic regions and facilitate genomic annotation. We used Salmonella as the model to search the genome for evolutionarily conserved regions and focused on the tetranucleotide sequence CTAG for its potentially important functions. In Salmonella, CTAG is highly conserved across the lineages and large numbers of CTAG-containing short sequences fall in intergenic regions, strongly indicating their biological importance. Computer modeling demonstrated stable stem-loop structures in some of the CTAG-containing intergenic regions, and substitution of a nucleotide of the CTAG sequence would radically rearrange the free energy and disrupt the structure. The postulated degeneration of CTAG takes distinct patterns among Salmonella lineages and provides novel information about genomic divergence and evolution of these bacterial pathogens. Comparison of the vertically and horizontally transmitted genomic segments showed different CTAG distribution landscapes, with the genome amelioration process to remove CTAG taking place inward from both terminals of the horizontally acquired segment.


Assuntos
Sequência Conservada , DNA Intergênico , Motivos de Nucleotídeos , Sequências Repetitivas de Ácido Nucleico , Salmonella/genética , Evolução Molecular , Genoma Bacteriano , Genômica/métodos , Conformação de Ácido Nucleico , Filogenia
15.
J Virol ; 91(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28298603

RESUMO

Reoviruses, like many eukaryotic viruses, contain an inverted 7-methylguanosine (m7G) cap linked to the 5' nucleotide of mRNA. The traditional functions of capping are to promote mRNA stability, protein translation, and concealment from cellular proteins that recognize foreign RNA. To address the role of mRNA capping during reovirus replication, we assessed the benefits of adding the African swine fever virus NP868R capping enzyme during reovirus rescue. C3P3, a fusion protein containing T7 RNA polymerase and NP868R, was found to increase protein expression 5- to 10-fold compared to T7 RNA polymerase alone while enhancing reovirus rescue from the current reverse genetics system by 100-fold. Surprisingly, RNA stability was not increased by C3P3, suggesting a direct effect on protein translation. A time course analysis revealed that C3P3 increased protein synthesis within the first 2 days of a reverse genetics transfection. This analysis also revealed that C3P3 enhanced processing of outer capsid µ1 protein to µ1C, a previously described hallmark of reovirus assembly. Finally, to determine the rate of infectious-RNA incorporation into new virions, we developed a new recombinant reovirus S1 gene that expressed the fluorescent protein UnaG. Following transfection of cells with UnaG and infection with wild-type virus, passage of UnaG through progeny was significantly enhanced by C3P3. These data suggest that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation.IMPORTANCE Our findings expand our understanding of how viruses utilize capping, suggesting that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation, in addition to enhancing protein translation. Beyond providing mechanistic insight into reovirus replication, our findings also show that reovirus reverse genetics rescue is enhanced 100-fold by the NP868R capping enzyme. Since reovirus shows promise as a cancer therapy, efficient reovirus reverse genetics rescue will accelerate production of recombinant reoviruses as candidates to enhance therapeutic potency. NP868R-assisted reovirus rescue will also expedite production of recombinant reovirus for mechanistic insights into reovirus protein function and structure.


Assuntos
Vírus da Febre Suína Africana/enzimologia , Nucleotidiltransferases/metabolismo , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/fisiologia , RNA Viral/metabolismo , Vírion/fisiologia , Montagem de Vírus , Vírus da Febre Suína Africana/genética , Linhagem Celular , Proteínas Recombinantes de Fusão/metabolismo , Genética Reversa , Vírion/genética , Replicação Viral
16.
Oncotarget ; 8(70): 115632-115646, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29383187

RESUMO

Imatinib, a multitargeted receptor tyrosine kinase inhibitor, is used as the standard initial therapy against inoperable gastrointestinal stromal tumor (GIST). However, GIST can acquire resistance to imatinib within several years of therapy. The development of oncolytic reovirus as an anticancer agent has expanded to many clinical trials for various tumors. Here, we investigated whether reovirus has antitumor activity against GIST cells in the setting of imatinib sensitivity in vitro and in vivo. Cell proliferation and apoptosis assays were performed using a human GIST cell line, GIST-T1, and imatinib-resistant GIST (GIST-IR) cells that we established. The molecular pathways responsible for cell damage by reovirus were explored using PCR-arrays and Western blots. Reovirus significantly induced apoptotic cell death in GIST-T1 and GIST-IR cells in vitro, despite differences in the activation of receptor tyrosine kinase pathways between GIST-T1 and GIST-IR. Molecular assays indicated the possibility that reovirus induces apoptotic cell death via Fas signaling. Furthermore, in vivo mouse tumor xenograft models demonstrated a significant anti-tumor effect of reovirus on both GIST-T1 and GIST-IR cells. Our results demonstrate the therapeutic potential of reovirus against GIST.

17.
Viruses ; 7(12): 6251-78, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26633466

RESUMO

Viruses that specifically replicate in tumor over normal cells offer promising cancer therapies. Oncolytic viruses (OV) not only kill the tumor cells directly; they also promote anti-tumor immunotherapeutic responses. Other major advantages of OVs are that they dose-escalate in tumors and can be genetically engineered to enhance potency and specificity. Unmodified wild type reovirus is a propitious OV currently in phase I-III clinical trials. This review summarizes modifications to reovirus that may improve potency and/or specificity during oncolysis. Classical genetics approaches have revealed reovirus variants with improved adaptation towards tumors or with enhanced ability to establish specific steps of virus replication and cell killing among transformed cells. The recent emergence of a reverse genetics system for reovirus has provided novel strategies to fine-tune reovirus proteins or introduce exogenous genes that could promote oncolytic activity. Over the next decade, these findings are likely to generate better-optimized second-generation reovirus vectors and improve the efficacy of oncolytic reotherapy.


Assuntos
Descoberta de Drogas/métodos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/isolamento & purificação , Vírus Oncolíticos/fisiologia , Reoviridae/isolamento & purificação , Reoviridae/fisiologia , Ensaios Clínicos como Assunto
18.
Adv Exp Med Biol ; 864: 95-114, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26420616

RESUMO

Biospecimens are the essential substrates for human biomarker research. Across the globe, biobanks have developed the facilities and mechanisms to collect, process, store and distribute those substrates to researchers. However, despite some notable successes, less than one hundred of the tens of thousands of purported biomarkers have been independently validated. We propose the need for a new paradigm in biobanking; simply pursuing larger numbers of participants, larger networks of biobanks and higher sample integrity will not, in itself, transform the success rate or efficiency of biomarker research. We propose that biobanks must embrace the intrinsic observational nature of biospecimens and furnish the recipients of biospecimens with the population metrics (descriptive statistics) that can facilitate the scientific rigor that is mandated in other areas of observational research. In addition, we discuss the value of population-based ascertainment and recruitment and the importance of the timing of biospecimen collections. Any assessment of biospecimen quality must go beyond the sample itself and consider both the patient/participant selection and the most appropriate and informative timing for specimen collection, particularly prior to any treatment intervention in diseased populations. The examples and rationales that we present are based largely on cancer-related collections because the feasibility of population metrics is greatly assisted by the comprehensive registries that are more common for cancer than other chronic diseases. Changing the biobanking paradigm from tacitly 'experimental' to explicitly 'observational' represents a profound but urgent methodological shift that will influence the establishment, management, reporting and impact of biobanks in the twenty-first century.


Assuntos
Bancos de Espécimes Biológicos/normas , Biomarcadores , Humanos , Manejo de Espécimes
19.
Stand Genomic Sci ; 10: 30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26203341

RESUMO

Salmonella arizonae (also called Salmonella subgroup IIIa) is a Gram-negative, non-spore-forming, motile, rod-shaped, facultatively anaerobic bacterium. S. arizonae strain RKS2983 was isolated from a human in California, USA. S. arizonae lies somewhere between Salmonella subgroups I (human pathogens) and V (also called S. bongori; usually non-pathogenic to humans) and so is an ideal model organism for studies of bacterial evolution from non-human pathogen to human pathogens. We hence sequenced the genome of RKS2983 for clues of genomic events that might have led to the divergence and speciation of Salmonella into distinct lineages with diverse host ranges and pathogenic features. The 4,574,836 bp complete genome contains 4,203 protein-coding genes, 82 tRNA genes and 7 rRNA operons. This genome contains several characteristics not reported to date in Salmonella subgroup I or V and may provide information about the genetic divergence of Salmonella pathogens.

20.
Cancer Lett ; 356(2 Pt B): 846-54, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25444894

RESUMO

The human epidermal growth factor receptor 2 (HER2)-targeting agent, trastuzumab, is effective for HER2-overexpressing gastric cancer therapy. As oncolytic reovirus is currently undergoing clinical trials internationally, we wanted to explore whether combination therapy using trastuzumab and reovirus might provide a novel, more effective therapeutic option for gastric cancer. Cell proliferation and cell apoptosis were examined in vitro, while molecular analysis of pathways responsible for cell damage was examined using polymerase chain reaction array. Activation of the proteins related to apoptosis, cell growth and survival was detected by Western blotting. Mouse tumor xenograft models were used to examine antitumor activity in vivo. Reovirus sensitized HER2-overexpressing gastric cancer cells to undergo apoptosis. Both in vitro and in vivo studies provided evidence that the combination therapy is a more powerful modality against HER2-overexpressing gastric cancer cells than treatment using a single agent. Molecular analysis indicated that combination therapy induced significantly higher levels of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in cancer cells. Antibody against TRAIL strongly inhibited cell toxicity caused by the combined treatment. These data suggest that reovirus may augment trastuzumab-induced cytotoxicity in gastric cancer cells.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Terapia Viral Oncolítica , Receptor ErbB-2/metabolismo , Reoviridae/genética , Neoplasias Gástricas/terapia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Terapia Combinada , Humanos , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor ErbB-2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Trastuzumab , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA