Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(7)2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30002319

RESUMO

Expense and the logistical difficulties with deploying scientific monitoring equipment are the biggest limitations to undertaking large scale monitoring of aquatic environments. The Smart Environmental Monitoring and Assessment Technologies (SEMAT) project is aimed at addressing this problem by creating an open standard for low-cost, near real-time, remote aquatic environmental monitoring systems. This paper presents the latest refinement of the SEMAT system in-line with the evolution of existing technologies, inexpensive sensors and environmental monitoring expectations. We provide a systems analysis and design of the SEMAT remote monitoring units and the back-end data management system. The system's value is augmented through a unique e-waste recycling and repurposing model which engages/educates the community in the production of the SEMAT units using social enterprise. SEMAT serves as an open standard for the community to innovate around to further the state of play with low-cost environmental monitoring. The latest SEMAT units have been trialled in a peri-urban lake setting and the results demonstrate the system's capabilities to provide ongoing data in near real-time to validate an environmental model of the study site.


Assuntos
Monitoramento Ambiental/economia , Lagos , Tecnologia de Sensoriamento Remoto/economia
2.
Sci Total Environ ; 573: 444-457, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27572537

RESUMO

In a rapidly changing water resources system, dynamic models based on the notion of systems thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key system variables over time. In this paper, an integrated system dynamics simulation model was developed using a system dynamics modelling approach to examine the feedback processes and interaction between the population, the water resource, and the agricultural production sub-sectors of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and as a decision support tool for exploring plausible policy scenarios necessary for sustainable water resource management and agricultural development. Structural and behavioural pattern tests, and statistical test were used to evaluate and validate the performance of the model. The results showed that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis also indicated that the model is reliable and robust to uncertainties in the major parameters. Results of the business as usual scenario showed that total population, agricultural, domestic, and industrial water demands will continue to increase over the simulated period. Besides business as usual, three additional policy scenarios were simulated to assess their impact on water demands, crop yield, and net-farm income. These were the development of the water infrastructure (scenario 1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model results could help inform planning and investment decisions within the basin to enhance food security, livelihoods development, socio-economic growth, and sustainable management of natural resources.

3.
Zoology (Jena) ; 116(5): 270-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23988133

RESUMO

The electrosensory system is found in all chondrichthyan fishes and is used for several biological functions, most notably prey detection. Variation in the physical parameters of a habitat type, i.e. water conductivity, may influence the morphology of the electrosensory system. Thus, the electrosensory systems of freshwater rays are considerably different from those of fully marine species; however, little research has so far examined the morphology and distribution of these systems in euryhaline elasmobranchs. The present study investigates and compares the morphology and distribution of electrosensory organs in two sympatric stingray species: the (euryhaline) estuary stingray, Dasyatis fluviorum, and the (marine) blue-spotted maskray, Neotrygon kuhlii. Both species possess a significantly higher number of ventral electrosensory pores than previously assessed elasmobranchs. This correlates with a diet consisting of benthic infaunal and epifaunal prey, where the electrosensory pore distribution patterns are likely to be a function of both ecology and phylogeny. The gross morphology of the electrosensory system in D. fluviorum is more similar to that of other marine elasmobranch species, rather than that of freshwater species. Both D. fluviorum and N. kuhlii possess 'macro-ampullae' with branching canals leading to several alveoli. The size of the pores and the length of the canals in D. fluviorum are smaller than in N. kuhlii, which is likely to be an adaptation to habitats with lower conductivity. This study indicates that the morphology of the electrosensory system in a euryhaline elasmobranch species seems very similar to that of their fully marine counterparts. However, some morphological differences are present between these two sympatric species, which are thought to be linked to their habitat type.


Assuntos
Ecossistema , Órgãos dos Sentidos/anatomia & histologia , Rajidae/anatomia & histologia , Animais , Especificidade da Espécie
4.
Sensors (Basel) ; 12(7): 9711-48, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23012567

RESUMO

There is an increasing need for environmental measurement systems to further science and thereby lead to improved policies for sustainable management. Marine environments are particularly hostile and extremely difficult for deploying sensitive measurement systems. As a consequence the need for data is greatest in marine environments, particularly in the developing economies/regions. Expense is typically the most significant limiting factor in the number of measurement systems that can be deployed, although technical complexity and the consequent high level of technical skill required for deployment and servicing runs a close second. This paper describes the Smart Environmental Monitoring and Analysis Technologies (SEMAT) project and the present development of the SEMAT technology. SEMAT is a "smart" wireless sensor network that uses a commodity-based approach for selecting technologies most appropriate to the scientifically driven marine research and monitoring domain/field. This approach allows for significantly cheaper environmental observation systems that cover a larger geographical area and can therefore collect more representative data. We describe SEMAT's goals, which include: (1) The ability to adapt and evolve; (2) Underwater wireless communications; (3) Short-range wireless power transmission; (4) Plug and play components; (5) Minimal deployment expertise; (6) Near real-time analysis tools; and (7) Intelligent sensors. This paper illustrates how the capacity of the system has been improved over three iterations towards realising these goals. The result is an inexpensive and flexible system that is ideal for short-term deployments in shallow coastal and other aquatic environments.

5.
PLoS Negl Trop Dis ; 5(12): e1416, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22180797

RESUMO

BACKGROUND: Ciguatera is a type of fish poisoning that occurs throughout the tropics, particularly in vulnerable island communities such as the developing Pacific Island Countries and Territories (PICTs). After consuming ciguatoxin-contaminated fish, people report a range of acute neurologic, gastrointestinal, and cardiac symptoms, with some experiencing chronic neurologic symptoms lasting weeks to months. Unfortunately, the true extent of illness and its impact on human communities and ecosystem health are still poorly understood. METHODS: A questionnaire was emailed to the Health and Fisheries Authorities of the PICTs to quantify the extent of ciguatera. The data were analyzed using t-test, incidence rate ratios, ranked correlation, and regression analysis. RESULTS: There were 39,677 reported cases from 17 PICTs, with a mean annual incidence of 194 cases per 100,000 people across the region from 1998-2008 compared to the reported annual incidence of 104/100,000 from 1973-1983. There has been a 60% increase in the annual incidence of ciguatera between the two time periods based on PICTs that reported for both time periods. Taking into account under-reporting, in the last 35 years an estimated 500,000 Pacific islanders might have suffered from ciguatera. CONCLUSIONS: This level of incidence exceeds prior ciguatera estimates locally and globally, and raises the status of ciguatera to an acute and chronic illness with major public health significance. To address this significant public health problem, which is expected to increase in parallel with environmental change, well-funded multidisciplinary research teams are needed to translate research advances into practical management solutions.


Assuntos
Ciguatera/epidemiologia , Ciguatera/economia , Ciguatera/etiologia , Recifes de Corais , Tempestades Ciclônicas , Humanos , Incidência , Doenças Negligenciadas/economia , Doenças Negligenciadas/epidemiologia , Doenças Negligenciadas/etiologia , Ilhas do Pacífico/epidemiologia , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA