Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(8): e0306746, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39150924

RESUMO

Foot-and-mouth disease (FMD) is a severe, highly contagious viral disease of livestock that has a significant economic impact on domestic animals and threatens wildlife survival in China and border countries. However, effective surveillance and prevention of this disease is often incomplete and unattainable due to the cost, the great diversity of wildlife hosts, the changing range and dynamics, and the diversity of FMDV. In this study, we used predictive models to reveal the spread and risk of FMD in anticipation of identifying key nodes to control its spread. For the first time, the spatial distribution of FMD serotype O was predicted in western China and border countries using a niche model, which is a combination of eco-geographic, human, topographic, and vegetation variables. The transboundary least-cost pathways (LCPs) model for ungulates in the study area were also calculated. Our study indicates that FMD serotype O survival is seasonal at low altitudes (March and June) and more sensitive to temperature differences at high altitudes. FMD serotype O risk was higher in Central Asian countries and both were highly correlated with the population variables. Ten LCPs were obtained representing Pakistan, Kazakhstan, Kyrgyzstan, and China.


Assuntos
Febre Aftosa , Sorogrupo , China/epidemiologia , Animais , Febre Aftosa/epidemiologia , Febre Aftosa/economia , Febre Aftosa/virologia , Vírus da Febre Aftosa/classificação , Vírus da Febre Aftosa/isolamento & purificação , Estações do Ano , Animais Selvagens
2.
Spat Spatiotemporal Epidemiol ; 49: 100657, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876568

RESUMO

Anthrax is a zoonotic disease caused by a spore-forming gram-positive bacterium, Bacillus anthracis. Increased anthropogenic factors inside wildlife-protected areas may worsen the spillover of the disease at the interface. Consequently, environmental suitability prediction for B. anthracis spore survival to locate a high-risk area is urgent. Here, we identified a potentially suitable habitat and a high-risk area for appropriate control measures. Our result revealed that a relatively largest segment of Omo National Park, about 23.7% (1,218 square kilometers) of the total area; 36.6% (711 square kilometers) of Mago National Park, and 29.4% (489 square kilometers) of Tama wildlife Reserve predicted as a high-risk area for the anthrax occurrence in the current situation. Therefore, the findings of this study provide the priority area to focus on and allocate resources for effective surveillance, prevention, and control of anthrax before it causes devastating effects on wildlife.


Assuntos
Animais Selvagens , Antraz , Bacillus anthracis , Animais , Antraz/epidemiologia , Antraz/veterinária , Antraz/prevenção & controle , Bacillus anthracis/isolamento & purificação , Animais Selvagens/microbiologia , Etiópia/epidemiologia , Conservação dos Recursos Naturais , Ecossistema
3.
PLoS One ; 19(5): e0293441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696505

RESUMO

SARS-CoV-2 infections in animals have been reported globally. However, the understanding of the complete spectrum of animals susceptible to SARS-CoV-2 remains limited. The virus's dynamic nature and its potential to infect a wide range of animals are crucial considerations for a One Health approach that integrates both human and animal health. This study introduces a bioinformatic approach to predict potential susceptibility to SARS-CoV-2 in both domestic and wild animals. By examining genomic sequencing, we establish phylogenetic relationships between the virus and its potential hosts. We focus on the interaction between the SARS-CoV-2 genome sequence and specific regions of the host species' ACE2 receptor. We analyzed and compared ACE2 receptor sequences from 29 species known to be infected, selecting 10 least common amino acid sites (LCAS) from key binding domains based on similarity patterns. Our analysis included 49 species across primates, carnivores, rodents, and artiodactyls, revealing complete consistency in the LCAS and identifying them as potentially susceptible. We employed the LCAS similarity pattern to predict the likelihood of SARS-CoV-2 infection in unexamined species. This method serves as a valuable screening tool for assessing infection risks in domestic and wild animals, aiding in the prevention of disease outbreaks.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Filogenia , SARS-CoV-2 , Animais , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/química , SARS-CoV-2/genética , COVID-19/virologia , Humanos , Animais Selvagens/virologia , Animais Domésticos/virologia , Biologia Computacional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA