Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(28): e2402278, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657958

RESUMO

Constructing soft robotics with safe human-machine interactions requires low-modulus, high-power-density artificial muscles that are sensitive to gentle stimuli. In addition, the ability to resist crack propagation during long-term actuation cycles is essential for a long service life. Herein, a material design is proposed to combine all these desirable attributes in a single artificial muscle platform. The design involves the molecular engineering of a liquid crystalline network with crystallizable segments and an ethylene glycol flexible spacer. A high degree of crystallinity can be afforded by utilizing aza-Michael chemistry to produce a low covalent crosslinking density, resulting in crack-insensitivity with a high fracture energy of 33 720 J m-2 and a high fatigue threshold of 2250 J m-2. Such crack-resistant artificial muscle with tissue-matched modulus of 0.7 MPa can generate a high power density of 450 W kg-1 at a low temperature of 40 °C. Notably, because of the presence of crystalline domains in the actuated state, no crack propagation is observed after 500 heating-cooling actuation cycles under a static load of 220 kPa. This study points to a pathway for the creation of artificial muscles merging seemingly disparate, but desirable properties, broadening their application potential in smart devices.


Assuntos
Músculos , Músculos/química , Robótica , Humanos , Cristais Líquidos/química , Temperatura , Temperatura Baixa , Materiais Biomiméticos/química
2.
Chem Commun (Camb) ; 59(47): 7141-7150, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37194593

RESUMO

Hydrogel actuators displaying programmable shape transformations are particularly attractive for integration into future soft robotics with safe human-machine interactions. However, these materials are still in their infancy, and many significant challenges remain presenting impediments to their practical implementation, including poor mechanical properties, slow actuation speed and limited actuation performance. In this review, we discuss the recent advances in hydrogel designs to address these critical limitations. First, the material design concepts to improve mechanical properties of hydrogel actuators will be introduced. Examples are also included to highlight strategies to realize fast actuation speed. In addition, recent progress about creating strong and fast hydrogel actuators are sumarized. Finally, a discussion of different methods to realize high values in several aspects of actuation performance metrics for this class of materials is provided. The advances and challenges discussed in this highlight could provide useful guidelines for rational design to manipulate the properties of hydrogel actuators toward widespread real-world applications.


Assuntos
Benchmarking , Hidrogéis , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA