Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 2(3)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160377

RESUMO

Telomeres are repeated sequences found at the end of the linear chromosomes of most eukaryotes and are required for chromosome integrity. Expression of the reverse-transcriptase telomerase allows for extension of telomeric repeats to counteract natural telomere shortening. Although Chlamydomonas reinhardtii, a photosynthetic unicellular green alga, is widely used as a model organism in photosynthesis and flagella research, and for biotechnological applications, the biology of its telomeres has not been investigated in depth. Here, we show that the C. reinhardtii (TTTTAGGG)n telomeric repeats are mostly nondegenerate and that the telomeres form a protective structure, with a subset ending with a 3' overhang and another subset presenting a blunt end. Although telomere size and length distributions are stable under various standard growth conditions, they vary substantially between 12 genetically close reference strains. Finally, we identify CrTERT, the gene encoding the catalytic subunit of telomerase and show that telomeres shorten progressively in mutants of this gene. Telomerase mutants eventually enter replicative senescence, demonstrating that telomerase is required for long-term maintenance of telomeres in C. reinhardtii.


Assuntos
Chlamydomonas reinhardtii/genética , Telomerase/genética , Telômero/genética , Sequência de Aminoácidos , Sequência de Bases , Variação Genética , Polimorfismo de Fragmento de Restrição , Sequências Repetitivas de Ácido Nucleico , Telomerase/química , Telomerase/metabolismo , Homeostase do Telômero , Encurtamento do Telômero
2.
Sci Rep ; 9(1): 1845, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755624

RESUMO

In eukaryotes, telomeres determine cell proliferation potential by triggering replicative senescence in the absence of telomerase. In Saccharomyces cerevisiae, senescence is mainly dictated by the first telomere that reaches a critically short length, activating a DNA-damage-like response. How the corresponding signaling is modulated by the telomeric structure and context is largely unknown. Here we investigated how subtelomeric elements of the shortest telomere in a telomerase-negative cell influence the onset of senescence. We found that a 15 kb truncation of the 7L subtelomere widely used in studies of telomere biology affects cell growth when combined with telomerase inactivation. This effect is likely not explained by (i) elimination of sequence homology at chromosome ends that would compromise homology-directed DNA repair mechanisms; (ii) elimination of the conserved subtelomeric X-element; (iii) elimination of a gene that would become essential in the absence of telomerase; and (iv) heterochromatinization of inner genes, causing the silencing of an essential gene in replicative senescent cells. This works contributes to better delineate subtelomere functions and their impact on telomere biology.


Assuntos
Estruturas Cromossômicas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Telomerase/metabolismo , Telômero/genética , Ciclo Celular , Divisão Celular , Senescência Celular , Estruturas Cromossômicas/metabolismo , Reparo de DNA por Recombinação , Encurtamento do Telômero
3.
J Proteomics ; 169: 87-98, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28918933

RESUMO

Lipid droplets are the major stock of lipids in oleaginous plant seeds. Despite their economic importance for oil production and biotechnological issues (biofuels, lubricants and plasticizers), numerous questions about their formation, structure and regulation are still unresolved. To determine water accessible domains of protein coating at lipid droplets surface, a structural proteomic approach has been performed. This technique relies on the millisecond timescale production of hydroxyl radicals by the radiolysis of water using Synchrotron X-ray white beam. Thanks to the evolution of mass spectrometry analysis techniques this approach allows the creation of a map of the solvent accessibility for proteins difficult to study by other means. Using these results, a S3 oleosin water accessibility map is proposed. This is the first time that such a map on an oleosin co-purified with plant lipid droplets and other associated protein is presented. BIOLOGICAL SIGNIFICANCE: Lipid droplet associated proteins function is linked to stability, structure and probably formation and lipid mobilization of droplets. Structure of these proteins in their native environment, at the interface between bulk water and the lipidic core of these organelles is only based on hydrophobicity plot. Using hydroxyl radical footprinting and proteomics approaches we studied water accessibility of one major protein in these droplets: S3 oleosin of Arabidopsis thaliana seeds.


Assuntos
Proteínas de Arabidopsis/análise , Gotículas Lipídicas/química , Proteínas de Plantas/química , Proteômica/métodos , Radical Hidroxila , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Água/metabolismo
4.
Cell ; 170(1): 72-85.e14, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666126

RESUMO

Maintenance of a minimal telomere length is essential to prevent cellular senescence. When critically short telomeres arise in the absence of telomerase, they can be repaired by homology-directed repair (HDR) to prevent premature senescence onset. It is unclear why specifically the shortest telomeres are targeted for HDR. We demonstrate that the non-coding RNA TERRA accumulates as HDR-promoting RNA-DNA hybrids (R-loops) preferentially at very short telomeres. The increased level of TERRA and R-loops, exclusively at short telomeres, is due to a local defect in RNA degradation by the Rat1 and RNase H2 nucleases, respectively. Consequently, the coordination of TERRA degradation with telomere replication is altered at shortened telomeres. R-loop persistence at short telomeres contributes to activation of the DNA damage response (DDR) and promotes recruitment of the Rad51 recombinase. Thus, the telomere length-dependent regulation of TERRA and TERRA R-loops is a critical determinant of the rate of replicative senescence.


Assuntos
Ciclo Celular , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo , Senescência Celular , Dano ao DNA , Exorribonucleases/metabolismo , Hibridização de Ácido Nucleico , Reparo de DNA por Recombinação , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/química , Proteínas de Ligação a Telômeros/metabolismo
5.
Mol Cell Endocrinol ; 439: 233-246, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27619407

RESUMO

Thyroid hormones (TH) have been mainly associated with post-embryonic development and adult homeostasis but few studies report direct experimental evidence for TH function at very early phases of embryogenesis. We assessed the outcome of altered TH signaling on early embryogenesis using the amphibian Xenopus as a model system. Precocious exposure to the TH antagonist NH-3 or impaired thyroid receptor beta function led to severe malformations related to neurocristopathies. These include pathologies with a broad spectrum of organ dysplasias arising from defects in embryonic neural crest cell (NCC) development. We identified a specific temporal window of sensitivity that encompasses the emergence of NCCs. Although the initial steps in NCC ontogenesis appeared unaffected, their migration properties were severely compromised both in vivo and in vitro. Our data describe a role for TH signaling in NCCs migration ability and suggest severe consequences of altered TH signaling during early phases of embryonic development.


Assuntos
Movimento Celular/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Crista Neural/citologia , Crista Neural/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores beta dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Derivados de Benzeno/farmacologia , Biomarcadores/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Crista Neural/efeitos dos fármacos , Fenótipo , Xenopus laevis/embriologia
6.
PLoS One ; 10(11): e0143113, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26581109

RESUMO

Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.


Assuntos
Arecaceae/enzimologia , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/metabolismo , Expressão Gênica , Yarrowia/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/enzimologia , Cromatografia em Camada Fina , Sequência Conservada , Diacilglicerol O-Aciltransferase/química , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Microssomos/enzimologia , Anotação de Sequência Molecular , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Recombinação Genética/genética , Homologia de Sequência de Aminoácidos , Transformação Genética , Triglicerídeos/metabolismo
7.
Planta ; 242(1): 53-68, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25820267

RESUMO

MAIN CONCLUSION: The protein, phospholipid and sterol composition of the oil body surface from the seeds of two rapeseed genotypes was compared in order to explain their contrasted oil extractability. In the mature seeds of oleaginous plants, storage lipids accumulate in specialized structures called oil bodies (OBs). These organelles consist of a core of neutral lipids surrounded by a phospholipid monolayer in which structural proteins are embedded. The physical stability of OBs is a consequence of the interactions between proteins and phospholipids. A detailed study of OB characteristics in mature seeds as well as throughout seed development was carried out on two contrasting rapeseed genotypes Amber and Warzanwski. These two accessions were chosen because they differ dramatically in (1) crushing ability, (2) oil extraction yield and, (3) the stability of purified OBs. Warzanwski has higher crushing ability, better oil extraction yield and less stable purified OBs than Amber. OB morphology was investigated in situ using fluorescence microscopy, transmission electron microscopy and pulsed field gradient NMR. During seed development, OB diameter first increased and then decreased 30 days after pollination in both Amber and Warzanwski embryos. In mature seeds, Amber OBs were significantly smaller. The protein, phospholipid and sterol composition of the hemi-membrane was compared between the two accessions. Amber OBs were enriched with H-oleosins and steroleosins, suggesting increased coverage of the OB surface consistent with their higher stability. The nature and composition of phospholipids and sterols in Amber OBs suggest that the hemi-membrane would have a more rigid structure than that of Warzanwski OBs.


Assuntos
Brassica rapa/embriologia , Brassica rapa/genética , Gotículas Lipídicas/metabolismo , Óleos de Plantas/isolamento & purificação , Sementes/anatomia & histologia , Sementes/metabolismo , Brassica rapa/anatomia & histologia , Eletroforese em Gel Bidimensional , Genótipo , Espectroscopia de Ressonância Magnética , Fosfolipídeos/metabolismo , Fitosteróis/metabolismo , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/ultraestrutura , Tocoferóis/metabolismo
8.
Mol Cell ; 53(6): 954-64, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24656131

RESUMO

The model for telomere shortening at each replication cycle is currently incomplete, and the exact contribution of the telomeric 3' overhang to the shortening rate remains unclear. Here, we demonstrate key steps of the mechanism of telomere replication in Saccharomyces cerevisiae. By following the dynamics of telomeres during replication at near-nucleotide resolution, we find that the leading-strand synthesis generates blunt-end intermediates before being 5'-resected and filled in. Importantly, the shortening rate is set by positioning the last Okazaki fragments at the very ends of the chromosome. Thus, telomeres shorten in direct proportion to the 3' overhang lengths of 5-10 nucleotides that are present in parental templates. Furthermore, the telomeric protein Cdc13 coordinates leading- and lagging-strand syntheses. Taken together, our data unravel a precise choreography of telomere replication elucidating the DNA end-replication problem and provide a framework to understand the control of the cell proliferation potential.


Assuntos
Cromossomos Fúngicos , Replicação do DNA , DNA de Cadeia Simples , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Telômero/química , Proliferação de Células , DNA/química , DNA/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homeostase do Telômero , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
9.
Nucleic Acids Res ; 42(6): 3648-65, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24393774

RESUMO

In the absence of telomerase, telomeres progressively shorten with every round of DNA replication, leading to replicative senescence. In telomerase-deficient Saccharomyces cerevisiae, the shortest telomere triggers the onset of senescence by activating the DNA damage checkpoint and recruiting homologous recombination (HR) factors. Yet, the molecular structures that trigger this checkpoint and the mechanisms of repair have remained elusive. By tracking individual telomeres, we show that telomeres are subjected to different pathways depending on their length. We first demonstrate a progressive accumulation of subtelomeric single-stranded DNA (ssDNA) through 5'-3' resection as telomeres shorten. Thus, exposure of subtelomeric ssDNA could be the signal for cell cycle arrest in senescence. Strikingly, early after loss of telomerase, HR counteracts subtelomeric ssDNA accumulation rather than elongates telomeres. We then asked whether replication repair pathways contribute to this mechanism. We uncovered that Rad5, a DNA helicase/Ubiquitin ligase of the error-free branch of the DNA damage tolerance (DDT) pathway, associates with native telomeres and cooperates with HR in senescent cells. We propose that DDT acts in a length-independent manner, whereas an HR-based repair using the sister chromatid as a template buffers precocious 5'-3' resection at the shortest telomeres.


Assuntos
Reparo de DNA por Recombinação , Encurtamento do Telômero , DNA Helicases/análise , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Fase G2/genética , RecQ Helicases/metabolismo , Fase S/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/genética , Telômero/química , Homeostase do Telômero
10.
Methods Mol Biol ; 1072: 185-98, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24136523

RESUMO

Oil bodies, lipid-storage organelles, are stabilized by a number of specific proteins. These proteins are very hydrophobic, which complicates their identification by "classical" proteomic protocols using trypsin digestion. Due to the lack of trypsin cleavage sites, the achievable protein coverage is limited or even insufficient for reliable protein identification. To identify such proteins and to enhance their coverage, we introduced a modified method comprising standard three-step procedure (SDS-PAGE, in-gel digestion, and LC-MS/MS analysis). In this method, chymotrypsin, single or in combination with trypsin, was used, which enabled to obtain proteolytic peptides from the hydrophobic regions and to identify new oil bodies' proteins. Our method can be easily applied to identification of other hydrophobic proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quimotripsina/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Lipídeos , Organelas/metabolismo , Proteômica/métodos , Tripsina/metabolismo , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas
11.
Proteomics ; 13(12-13): 1836-49, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23589365

RESUMO

Oleaginous seeds store lipids in specialized structures called oil bodies (OBs). These organelles consist of a core of neutral lipids bound by proteins embedded in a phospholipid monolayer. OB proteins are well conserved in plants and have long been grouped into only two categories: structural proteins or enzymes. Recent work, however, which identified other classes of proteins associated with OBs, clearly shows that this classification is obsolete. Proteomics-mediated OB protein identification is facilitated in plants for which the genome is sequenced and annotated. However, it is not clear whether this knowledge can be dependably transposed to less well-characterized plants, including the well-established commercial sources of seed oil as well as the many others being proposed as novel sources for biodiesel, especially in Africa and Asia. Toward an update of the current data available on OB proteins this review discusses (i) the specific difficulties for proteomic studies of organelles; (ii) a 2012 census of the proteins found in seed OBs from various crops; (iii) the oleosin composition of OBs and their role in organelle stability; (iv) PTM of OB proteins as an emerging field of investigation; and finally we describe the emerging model of the OB proteome from oilseed crops.


Assuntos
Produtos Agrícolas , Óleos de Plantas , Proteínas de Plantas , Sementes , Processamento de Proteína Pós-Traducional , Proteoma
12.
Biochim Biophys Acta ; 1834(1): 395-403, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22885023

RESUMO

Post translational modifications of a seed storage protein, barley γ3-hordein, were determined using immunochemical and mass spectrometry methods. IgE reactivity towards this protein was measured using sera from patients diagnosed with allergies to wheat. N-glycosylation was found at an atypical Asn-Leu-Cys site. The observed glycan contains xylose. This indicates that at least some γ3-hordein molecules trafficked through the Golgi apparatus. Disulfide bridges in native γ3-hordein were almost the same as those found in wheat γ46-gliadin, except the bridge involving the cysteine included in the glycosylation site. IgE reacted more strongly towards the recombinant than the natural γ3-hordein protein. IgE binding to γ3-hordein increased when the protein sample was reduced. Glycosylation and disulfide bridges therefore decrease epitope accessibility. Thus the IgE from patients sensitized to wheat cross-react with γ3-hordein due to sequence homology with wheat allergens rather than through shared carbohydrate determinants.


Assuntos
Dissulfetos/química , Hipersensibilidade Alimentar/imunologia , Glutens/química , Hordeum/química , Imunoglobulina E/química , Imunoglobulina E/imunologia , Reações Cruzadas , Dissulfetos/imunologia , Epitopos/química , Epitopos/imunologia , Feminino , Glutens/imunologia , Glicosilação , Hordeum/imunologia , Humanos , Masculino , Triticum/química , Triticum/imunologia , Xilose/química , Xilose/imunologia
13.
J Agric Food Chem ; 60(28): 6994-7004, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22720877

RESUMO

In this study, oil bodies (OBs) from Gevuina avellana (OBs-G) and Madia sativa (OBs-M) were isolated and characterized. Microscopic inspection revealed that the monolayer on OB-G was thinner compared to that on OB-M. Cytometric profiles regarding size, complexity, and staining for the two OB sources were similar. Fatty acid to protein mass ratio in both OBs was near 29, indicating high lipid enrichment. OBs-G and OBs-M showed a strong electrostatic repulsion over wide ranges of pH (5.5-9.5) and NaCl concentration (0-150 mM). Proteins displaying highly conserved sequences (steroleosins and aquaporins) in the plant kingdom were identified. The presence of oleosins was immunologically revealed using antibodies raised against Arabidopsis thaliana oleosins. OBs-G and OBs-M exhibited no significant cytotoxicity against the cells. This is the first report about the isolation and characterization of OBs-G and OBs-M, and this knowledge could be used for novel applications of these raw materials.


Assuntos
Asteraceae , Óleos de Plantas/química , Proteaceae , Sementes/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Lipídeos/análise , Concentração Osmolar , Proteínas de Plantas/análise , Sementes/química
14.
Cell Stem Cell ; 10(5): 531-43, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22560077

RESUMO

The subventricular zone (SVZ) neural stem cell niche contains mixed populations of stem cells, transit-amplifying cells, and migrating neuroblasts. Deciphering how endogenous signals, such as hormones, affect the balance between these cell types is essential for understanding the physiology of niche plasticity and homeostasis. We show that Thyroid Hormone (T(3)) and its receptor, TRα1, are directly involved in maintaining this balance. TRα1 is expressed in amplifying and migrating cells. In vivo gain- and loss-of-function experiments demonstrate first, that T(3)/TRα1 directly repress Sox2 expression, and second, that TRα1 overexpression in the niche favors the appearance of DCX+ migrating neuroblasts. Lack of TRα increases numbers of SOX2+ cells in the SVZ. Hypothyroidism increases proportions of cells in interphase. Thus, in the adult SVZ, T(3)/TRα1 together favor neural stem cell commitment and progression toward a migrating neuroblast phenotype; this transition correlates with T(3)/TRα1-dependent transcriptional repression of Sox2.


Assuntos
Células-Tronco Adultas/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Fatores de Transcrição SOXB1/metabolismo , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Movimento Celular/genética , Proteína Duplacortina , Repressão Enzimática/genética , Camundongos , Camundongos Mutantes , RNA Interferente Pequeno/genética , Fatores de Transcrição SOXB1/genética , Transdução de Sinais , Nicho de Células-Tronco/genética , Receptores alfa dos Hormônios Tireóideos/genética , Hormônios Tireóideos/genética , Transgenes/genética
15.
J Plant Physiol ; 168(17): 2015-20, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21803444

RESUMO

Despite the importance of seed oil bodies (OBs) as enclosed compartments for oil storage, little is known about lipid and protein accumulation in OBs during seed formation. OBs from rapeseed (Brassica napus) consist of a triacylglycerol (TAG) core surrounded by a phospholipid monolayer embedded with integral proteins which confer high stability to OBs in the mature dry seed. In the present study, we investigated lipid and protein accumulation patterns throughout seed development (from 5 to 65 days after pollination [DAP]) both in the whole seed and in purified OBs. Deposition of the major proteins (oleosins, caleosins and steroleosins) into OBs was assessed through (i) gene expression pattern, (ii) proteomics analysis, and (iii) protein immunodetection. For the first time, a sequential deposition of integral OB proteins was established. Accumulation of oleosins and caleosins was observed starting from early stages of seed development (12-17 DAP), while steroleosins accumulated later (~25 DAP) onwards.


Assuntos
Brassica napus/metabolismo , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Brassica napus/crescimento & desenvolvimento , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Ácidos Graxos/metabolismo , Expressão Gênica , Fosfolipídeos/metabolismo , Proteínas de Plantas/genética , Proteômica , Sementes/crescimento & desenvolvimento , Fatores de Tempo , Triglicerídeos/metabolismo
16.
Proteomics ; 11(16): 3430-4, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21751352

RESUMO

Plant seed oil bodies, subcellular lipoprotein inclusions providing storage reserves, are composed of a neutral lipid core surrounded by a phospholipid monolayer with several integrated proteins that play a significant role in stabilization of the particles and probably also in lipid mobilization. Oil bodies' proteins are generally very hydrophobic, due to the long uncharged sequences anchoring them into the lipid core, which makes them extremely difficult to handle and to digest successfully. Although oil bodies have been intensively studied during last decades, not all their proteins have been identified yet. To overcome the problems connected with their identification, a method based on SDS-PAGE, in-gel digestion and LC-MS/MS analysis was used. Digestion was carried out with trypsin and chymotrypsin, single or in combination, which increased significantly the number of identified peptides, namely the hydrophobic ones. Thanks to this methodology it was possible to achieve an extensive coverage of proteins studied, to analyze their N-terminal modifications and moreover, to detect four new oil bodies' protein isoforms, which demonstrates the complexity of oil bodies' protein composition.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Fragmentos de Peptídeos/análise , Isoformas de Proteínas/química , Sementes/química , Vacúolos/química , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Cromatografia Líquida , Quimotripsina/química , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Óleos de Plantas/química , Isoformas de Proteínas/classificação , Isoformas de Proteínas/isolamento & purificação , Sementes/metabolismo , Análise de Sequência de Proteína , Tripsina/química
17.
Plant Physiol Biochem ; 49(3): 352-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21251844

RESUMO

The seed oil of Jatropha curcas has been proposed as a source of biodiesel. In plants, seed oil is stored in subcellular organelles called oil bodies (OBs), which are stabilized by proteins. Proteome composition of the J. curcas OBs revealed oleosins as the major component and additional proteins similar to those in other oil seed plants. Three J. curcas oleosins were isolated and characterized at the gene, transcript and protein level. They all contained the characteristic proline knot domain and were each present as a single copy in the genome. The smallest, L-form JcOle3 contained an intron. Isolation of its promoter revealed seed-specific cis-regulatory motifs among others. Spatio-temporal transcript expression of J. curcas oleosins was largely similar to that in other oil seed plants. Immunoassay with antibodies against an Arabidopsis oleosin or against JcOle3, on seed proteins extracted by different approaches, revealed JcOle3 oligomers. Alleles of JcOle3 and single nucleotide polymorphisms (SNPs) in its intron were identified in J. curcas accessions, species and hybrids. Identified alleles and SNPs could serve as markers in phylogenetic or breeding studies.


Assuntos
Genes de Plantas , Jatropha/genética , Filogenia , Óleos de Plantas , Proteínas de Plantas/genética , Sementes/metabolismo , Alelos , Proteínas de Arabidopsis/metabolismo , Expressão Gênica , Marcadores Genéticos , Genoma , Íntrons , Jatropha/metabolismo , Organelas/metabolismo , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Proteoma
18.
Mol Endocrinol ; 25(2): 225-37, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21239616

RESUMO

The diversity of thyroid hormone T(3) effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T(3) and its receptors on transcription does not reflect this diversity. Here, T(3)-dependent amphibian metamorphosis was exploited to investigate, in an in vivo developmental context, how T(3) directly regulates gene expression. Two, direct positively regulated T(3)-response genes encoding transcription factors were analyzed: thyroid hormone receptor ß (TRß) and TH/bZIP. Reverse transcription-real-time quantitative PCR analysis on Xenopus tropicalis tadpole brain and tail fin showed differences in expression levels in premetamorphic tadpoles (lower for TH/bZIP than for TRß) and differences in induction after T(3) treatment (lower for TRß than for TH/bZIP). To dissect the mechanisms underlying these differences, chromatin immunoprecipitation was used. T(3) differentially induced RNA polymerase II and histone tail acetylation as a function of transcriptional level. Gene-specific patterns of TR binding were found on the different T(3) -responsive elements (higher for TRß than for TH/bZIP), correlated with gene-specific modifications of H3K4 methylation (higher for TRß than for TH/bZIP). Moreover, tissue-specific modifications of H3K27 were found (lower in brain than in tail fin). This first in vivo analysis of the association of histone modifications and TR binding/gene activation during vertebrate development for any nuclear receptor indicate that chromatin context of thyroid-responsive elements loci controls the capacity to bind TR through variations in histone H3K4 methylation, and that the histone code, notably H3, contributes to the fine tuning of gene expression that underlies complex physiological T(3) responses.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Tri-Iodotironina/metabolismo , Acetilação , Animais , Animais Geneticamente Modificados , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Histonas/metabolismo , Larva/genética , Metilação , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Transcrição Gênica , Xenopus
19.
Mass Spectrom Rev ; 30(5): 772-853, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21038434

RESUMO

Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.


Assuntos
Regulação da Expressão Gênica de Plantas , Organelas/química , Células Vegetais/química , Proteínas de Plantas/análise , Proteômica/métodos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/ultraestrutura , Biomarcadores/metabolismo , Fracionamento Celular , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Organelas/ultraestrutura , Oryza/química , Oryza/genética , Oryza/ultraestrutura , Células Vegetais/ultraestrutura , Proteômica/instrumentação , Coloração e Rotulagem , Zea mays/química , Zea mays/genética , Zea mays/ultraestrutura
20.
Proteomics ; 9(12): 3268-84, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19562800

RESUMO

Seed oil bodies (OBs) are intracellular particles storing lipids as food or biofuel reserves in oleaginous plants. Since Brassica napus OBs could be easily contaminated with protein bodies and/or myrosin cells, they must be purified step by step using floatation technique in order to remove non-specifically trapped proteins. An exhaustive description of the protein composition of rapeseed OBs from two double-zero varieties was achieved by a combination of proteomic and genomic tools. Genomic analysis led to the identification of sequences coding for major seed oil body proteins, including 19 oleosins, 5 steroleosins and 9 caleosins. Most of these proteins were also identified through proteomic analysis and displayed a high level of sequence conservation with their Arabidopsis thaliana counterparts. Two rapeseed oleosin orthologs appeared acetylated on their N-terminal alanine residue and both caleosins and steroleosins displayed a low level of phosphorylation.


Assuntos
Brassica napus/química , Corpos de Inclusão/química , Proteínas de Armazenamento de Sementes/análise , Sementes/química , Sequência de Aminoácidos , Arabidopsis/genética , Brassica napus/genética , Brassica rapa/química , Brassica rapa/genética , Proteínas de Ligação ao Cálcio/análise , Immunoblotting , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/análise , Processamento de Proteína Pós-Traducional , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA