Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38932154

RESUMO

We previously reported that deletion of a 44-nucleotide element in the 3' untranslated region (UTR) of the Chikungunya virus (CHIKV) genome enhances the virulence of CHIKV infection in mice. Here, we find that while this 44-nucleotide deletion enhances CHIKV fitness in murine embryonic fibroblasts in a manner independent of the type I interferon response, the same mutation decreases viral fitness in C6/36 mosquito cells. Further, the fitness advantage conferred by the UTR deletion in mammalian cells is maintained in vivo in a mouse model of CHIKV dissemination. Finally, SHAPE-MaP analysis of the CHIKV 3' UTR revealed this 44-nucleotide element forms a distinctive two-stem-loop structure that is ablated in the mutant 3' UTR without altering additional 3' UTR RNA secondary structures.


Assuntos
Regiões 3' não Traduzidas , Febre de Chikungunya , Vírus Chikungunya , Replicação Viral , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Animais , Camundongos , Febre de Chikungunya/virologia , RNA Viral/genética , Virulência , Linhagem Celular , Fibroblastos/virologia , Aptidão Genética , Humanos , Deleção de Sequência , Conformação de Ácido Nucleico , Modelos Animais de Doenças
2.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895472

RESUMO

Cardiac fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) material resulting in cardiac tissue scarring and dysfunction. While it is commonly accepted that myofibroblasts are the major contributors to ECM deposition in cardiac fibrosis, their origin remains debated. By combining lineage tracing and RNA sequencing, our group made the paradigm-shifting discovery that a subpopulation of resident vascular stem cells residing within the aortic, carotid artery, and femoral aartery adventitia (termed AdvSca1-SM cells) originate from mature vascular smooth muscle cells (SMCs) through an in situ reprogramming process. SMC-to-AdvSca1-SM reprogramming and AdvSca1-SM cell maintenance is dependent on induction and activity of the transcription factor, KLF4. However, the molecular mechanism whereby KLF4 regulates AdvSca1-SM phenotype remains unclear. In the current study, leveraging a highly specific AdvSca1-SM cell reporter system, single-cell RNA-sequencing (scRNA-seq), and spatial transcriptomic approaches, we demonstrate the profibrotic differentiation trajectory of coronary artery-associated AdvSca1-SM cells in the setting of Angiotensin II (AngII)-induced cardiac fibrosis. Differentiation was characterized by loss of stemness-related genes, including Klf4 , but gain of expression of a profibrotic phenotype. Importantly, these changes were recapitulated in human cardiac hypertrophic tissue, supporting the translational significance of profibrotic transition of AdvSca1-SM-like cells in human cardiomyopathy. Surprisingly and paradoxically, AdvSca1-SM-specific genetic knockout of Klf4 prior to AngII treatment protected against cardiac inflammation and fibrosis, indicating that Klf4 is essential for the profibrotic response of AdvSca1-SM cells. Overall, our data reveal the contribution of AdvSca1-SM cells to myofibroblasts in the setting of AngII-induced cardiac fibrosis. KLF4 not only maintains the stemness of AdvSca1-SM cells, but also orchestrates their response to profibrotic stimuli, and may serve as a therapeutic target in cardiac fibrosis.

3.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991018

RESUMO

We previously established that vascular smooth muscle-derived adventitial progenitor cells (AdvSca1-SM) preferentially differentiate into myofibroblasts and contribute to fibrosis in response to acute vascular injury. However, the role of these progenitor cells in chronic atherosclerosis has not been defined. Using an AdvSca1-SM cell lineage tracing model, scRNA-Seq, flow cytometry, and histological approaches, we confirmed that AdvSca1-SM-derived cells localized throughout the vessel wall and atherosclerotic plaques, where they primarily differentiated into fibroblasts, smooth muscle cells (SMC), or remained in a stem-like state. Krüppel-like factor 4 (Klf4) knockout specifically in AdvSca1-SM cells induced transition to a more collagen-enriched fibroblast phenotype compared with WT mice. Additionally, Klf4 deletion drastically modified the phenotypes of non-AdvSca1-SM-derived cells, resulting in more contractile SMC and atheroprotective macrophages. Functionally, overall plaque burden was not altered with Klf4 deletion, but multiple indices of plaque composition complexity, including necrotic core area, macrophage accumulation, and fibrous cap thickness, were reduced. Collectively, these data support that modulation of AdvSca1-SM cells through KLF4 depletion confers increased protection from the development of potentially unstable atherosclerotic plaques.


Assuntos
Placa Aterosclerótica , Camundongos , Animais , Placa Aterosclerótica/patologia , Fator 4 Semelhante a Kruppel , Miócitos de Músculo Liso/patologia , Células-Tronco/patologia , Músculo Liso/patologia
4.
Arterioscler Thromb Vasc Biol ; 43(11): 2223-2230, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37706321

RESUMO

BACKGROUND: In recent years, fate-mapping lineage studies in mouse models have led to major advances in vascular biology by allowing investigators to track specific cell populations in vivo. One of the most frequently used lineage tracing approaches involves tamoxifen-inducible CreERT-LoxP systems. However, tamoxifen treatment can also promote effects independent of Cre recombinase activation, many of which have not been fully explored. METHODS: To elucidate off-target effects of tamoxifen, male and female mice were either unmanipulated or injected with tamoxifen or corn oil. All mice received PCSK9 (proprotein convertase subtilisin/kexin type 9)-AAV (adeno-associated virus) injections and a modified Western diet to induce hypercholesterolemia. After 2 weeks, serum cholesterol and liver morphology were assessed. To determine the duration of any tamoxifen effects in long-term atherosclerosis experiments, mice received either 12 days of tamoxifen at baseline or 12 days plus 2 sets of 5-day tamoxifen boosters; all mice received PCSK9-AAV injections and a modified Western diet to induce hypercholesterolemia. After 24 weeks, serum cholesterol and aortic sinus plaque burden were measured. RESULTS: After 2 weeks of atherogenic treatment, mice injected with tamoxifen demonstrated significantly reduced serum cholesterol levels compared with uninjected- or corn oil-treated mice. However, there were no differences in PCSK9-mediated knockdown of LDL (low-density lipoprotein) receptors between the groups. Additionally, tamoxifen-treated mice exhibited significantly increased hepatic lipid accumulation compared with the other groups. Finally, the effects of tamoxifen remained for at least 8 weeks after completion of injections, with mice demonstrating persistent decreased serum cholesterol and impaired atherosclerotic plaque formation. CONCLUSIONS: In this study, we establish that tamoxifen administration results in decreased serum cholesterol, decreased plaque formation, and increased hepatic lipid accumulation. These alterations represent significant confounding variables in atherosclerosis research, and we urge future investigators to take these findings into consideration when planning and executing their own atherosclerosis experiments.


Assuntos
Aterosclerose , Hipercolesterolemia , Placa Aterosclerótica , Masculino , Feminino , Camundongos , Animais , Pró-Proteína Convertase 9/metabolismo , Hipercolesterolemia/tratamento farmacológico , Óleo de Milho , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Aterosclerose/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Colesterol , Camundongos Endogâmicos C57BL
5.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37503181

RESUMO

We previously established that vascular smooth muscle-derived adventitial progenitor cells (AdvSca1-SM) preferentially differentiate into myofibroblasts and contribute to fibrosis in response to acute vascular injury. However, the role of these progenitor cells in chronic atherosclerosis has not been defined. Using an AdvSca1-SM lineage tracing model, scRNA-Seq, flow cytometry, and histological approaches, we confirmed that AdvSca1-SM cells localize throughout the vessel wall and atherosclerotic plaques, where they primarily differentiate into fibroblasts, SMCs, or remain in a stem-like state. Klf4 knockout specifically in AdvSca1-SM cells induced transition to a more collagen-enriched myofibroblast phenotype compared to WT mice. Additionally, Klf4 depletion drastically modified the phenotypes of non-AdvSca1-SM-derived cells, resulting in more contractile SMCs and atheroprotective macrophages. Functionally, overall plaque burden was not altered with Klf4 depletion, but multiple indices of plaque vulnerability were reduced. Collectively, these data support that modulating the AdvSca1-SM population confers increased protection from the development of unstable atherosclerotic plaques.

6.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36976650

RESUMO

Vascular smooth muscle-derived Sca1+ adventitial progenitor (AdvSca1-SM) cells are tissue-resident, multipotent stem cells that contribute to progression of vascular remodeling and fibrosis. Upon acute vascular injury, AdvSca1-SM cells differentiate into myofibroblasts and are embedded in perivascular collagen and the extracellular matrix. While the phenotypic properties of AdvSca1-SM-derived myofibroblasts have been defined, the underlying epigenetic regulators driving the AdvSca1-SM-to-myofibroblast transition are unclear. We show that the chromatin remodeler Smarca4/Brg1 facilitates AdvSca1-SM myofibroblast differentiation. Brg1 mRNA and protein were upregulated in AdvSca1-SM cells after acute vascular injury, and pharmacological inhibition of Brg1 by the small molecule PFI-3 attenuated perivascular fibrosis and adventitial expansion. TGF-ß1 stimulation of AdvSca1-SM cells in vitro reduced expression of stemness genes while inducing expression of myofibroblast genes that was associated with enhanced contractility; PFI blocked TGF-ß1-induced phenotypic transition. Similarly, genetic knockdown of Brg1 in vivo reduced adventitial remodeling and fibrosis and reversed AdvSca1-SM-to-myofibroblast transition in vitro. Mechanistically, TGF-ß1 promoted redistribution of Brg1 from distal intergenic sites of stemness genes and recruitment to promoter regions of myofibroblast-related genes, which was blocked by PFI-3. These data provide insight into epigenetic regulation of resident vascular progenitor cell differentiation and support that manipulating the AdvSca1-SM phenotype will provide antifibrotic clinical benefits.


Assuntos
Miofibroblastos , Lesões do Sistema Vascular , Humanos , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Cromatina/metabolismo , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Epigênese Genética , Diferenciação Celular , Músculo Liso Vascular , Fibrose , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Cardiovasc Res ; 118(6): 1452-1465, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33989378

RESUMO

Cardiovascular diseases are characterized by chronic vascular dysfunction and provoke pathological remodelling events, such as neointima formation, atherosclerotic lesion development, and adventitial fibrosis. While lineage-tracing studies have shown that phenotypically modulated smooth muscle cells (SMCs) are the major cellular component of neointimal lesions, the cellular origins and microenvironmental signalling mechanisms that underlie remodelling along the adventitial vascular layer are not fully understood. However, a growing body of evidence supports a unique population of adventitial lineage-restricted progenitor cells expressing the stem cell marker, stem cell antigen-1 (Sca1; AdvSca1 cells) as important effectors of adventitial remodelling and suggests that they are at least partially responsible for subsequent pathological changes that occur in the media and intima. AdvSca1 cells are being studied in murine models of atherosclerosis, perivascular fibrosis, and neointima formation in response to acute vascular injury. Depending on the experimental conditions, AdvSca1 cells exhibit the capacity to differentiate into SMCs, endothelial cells, chondrocytes, adipocytes, and pro-remodelling cells, such as myofibroblasts and macrophages. These data indicate that AdvSca1 cells may be a targetable cell population to influence the outcomes of pathologic vascular remodelling. Important questions remain regarding the origins of AdvSca1 cells and the essential signalling mechanisms and microenvironmental factors that regulate both maintenance of their stem-like, progenitor phenotype and their differentiation into lineage-specified cell types. Adding complexity to the story, recent data indicate that the collective population of adventitial progenitor cells is likely composed of several smaller, lineage-restricted subpopulations, which are not fully defined by their transcriptomic profile and differentiation capabilities. The aim of this review is to outline the heterogeneity of Sca1+ adventitial progenitor cells, summarize their role in vascular homeostasis and remodelling, and comment on their translational relevance in humans.


Assuntos
Aterosclerose , Ataxias Espinocerebelares , Animais , Aterosclerose/metabolismo , Diferenciação Celular/genética , Células Endoteliais/patologia , Fibrose , Homeostase , Camundongos , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia , Células-Tronco/metabolismo , Remodelação Vascular
8.
J Sports Med Phys Fitness ; 62(1): 74-80, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33555668

RESUMO

BACKGROUND: Freestyle skiers must optimize their aerial performance by maintaining the strength and coordination to propel themselves in the air and adapt to landings and take-offs on uneven surfaces. The purpose of this study was to investigate the differences in areal bone mineral density (aBMD) and body composition in freestyle skiers and non-freestyle skiing controls. We hypothesized that the unique demands and summation of forces experienced by freestyle athletes would manifest as greater femoral neck aBMD, lower percent body fat, and lower Body Mass Index (BMI) than non-freestyle skiing controls. This is a retrospective cohort study. METHODS: Eighteen freestyle skiers (14 M 4 F, [27.56±5.22 years]) and 15 controls (7 M 8 F, [26.93±3.54 years]) were measured with dual energy X-ray absorptiometry (DXA) to determine total body composition, hip and lumbar spine aBMD, and bone mineral composition (BMC). Height and weight were measured with an in-office stadiometer and scale. Questionnaires were used to determine physical activity and pertinent medical history. Between-group variations were analyzed with an analysis of variance (ANOVA) and stratified by sex. RESULTS: Percent body fat, hip and lumbar spine aBMD, BMC, and area were all similar between freeski and non-freeski athletes (P<0.05 for all). BMI was significantly lower in male freeski athletes (23.97 kg/m2, 95% CI: 22.75-25.18) compared to non-freestyle skiing controls (26.64 kg/m2, 95% CI: 24.43-28.86) (P=0.03). CONCLUSIONS: Freestyle skiers have a lower BMI than non-freestyle skiers. All skiers in this study have similar percent body fat, aBMD, and BMC. This pilot study supports that there are unique musculoskeletal adaptations based on type of skiing. Skiers endure a variety of intense physical forces yet remain understudied despite high orthopedic injury rates. This study serves to broaden the current sports health literature and explore the physical demands and subsequent physiology of freestyle skiers.


Assuntos
Densidade Óssea , Esqui , Absorciometria de Fóton , Humanos , Projetos Piloto , Estudos Retrospectivos
9.
JCI Insight ; 5(23)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33119549

RESUMO

Resident vascular adventitial SCA1+ progenitor (AdvSca1) cells are essential in vascular development and injury. However, the heterogeneity of AdvSca1 cells presents a unique challenge in understanding signaling pathways orchestrating their behavior in homeostasis and injury responses. Using smooth muscle cell (SMC) lineage-tracing models, we identified a subpopulation of AdvSca1 cells (AdvSca1-SM) originating from mature SMCs that undergo reprogramming in situ and exhibit a multipotent phenotype. Here we employed lineage tracing and RNA-sequencing to define the signaling pathways regulating SMC-to-AdvSca1-SM cell reprogramming and AdvSca1-SM progenitor cell phenotype. Unbiased hierarchical clustering revealed that genes related to hedgehog/WNT/beta-catenin signaling were significantly enriched in AdvSca1-SM cells, emphasizing the importance of this signaling axis in the reprogramming event. Leveraging AdvSca1-SM-specific expression of GLI-Kruppel family member GLI1 (Gli1), we generated Gli1-CreERT2-ROSA26-YFP reporter mice to selectively track AdvSca1-SM cells. We demonstrated that physiologically relevant vascular injury or AdvSca1-SM cell-specific Kruppel-like factor 4 (Klf4) depletion facilitated the proliferation and differentiation of AdvSca1-SM cells to a profibrotic myofibroblast phenotype rather than macrophages. Surprisingly, AdvSca1-SM cells selectively contributed to adventitial remodeling and fibrosis but little to neointima formation. Together, these findings strongly support therapeutics aimed at preserving the AdvSca1-SM cell phenotype as a viable antifibrotic approach.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Remodelação Vascular/genética , Animais , Artérias/metabolismo , Diferenciação Celular/genética , Feminino , Fibrose/genética , Fibrose/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Células-Tronco/metabolismo , Remodelação Vascular/fisiologia , Via de Sinalização Wnt
10.
Arterioscler Thromb Vasc Biol ; 40(8): 1854-1869, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32580634

RESUMO

OBJECTIVE: Our recent work demonstrates that PTEN (phosphatase and tensin homolog) is an important regulator of smooth muscle cell (SMC) phenotype. SMC-specific PTEN deletion promotes spontaneous vascular remodeling and PTEN loss correlates with increased atherosclerotic lesion severity in human coronary arteries. In mice, PTEN overexpression reduces plaque area and preserves SMC contractile protein expression in atherosclerosis and blunts Ang II (angiotensin II)-induced pathological vascular remodeling, suggesting that pharmacological PTEN upregulation could be a novel therapeutic approach to treat vascular disease. Approach and Results: To identify novel PTEN activators, we conducted a high-throughput screen using a fluorescence based PTEN promoter-reporter assay. After screening ≈3400 compounds, 11 hit compounds were chosen based on level of activity and mechanism of action. Following in vitro confirmation, we focused on 5-azacytidine, a DNMT1 (DNA methyltransferase-1) inhibitor, for further analysis. In addition to PTEN upregulation, 5-azacytidine treatment increased expression of genes associated with a differentiated SMC phenotype. 5-Azacytidine treatment also maintained contractile gene expression and reduced inflammatory cytokine expression after PDGF (platelet-derived growth factor) stimulation, suggesting 5-azacytidine blocks PDGF-induced SMC de-differentiation. However, these protective effects were lost in PTEN-deficient SMCs. These findings were confirmed in vivo using carotid ligation in SMC-specific PTEN knockout mice treated with 5-azacytidine. In wild type controls, 5-azacytidine reduced neointimal formation and inflammation while maintaining contractile protein expression. In contrast, 5-azacytidine was ineffective in PTEN knockout mice, indicating that the protective effects of 5-azacytidine are mediated through SMC PTEN upregulation. CONCLUSIONS: Our data indicates 5-azacytidine upregulates PTEN expression in SMCs, promoting maintenance of SMC differentiation and reducing pathological vascular remodeling in a PTEN-dependent manner.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , PTEN Fosfo-Hidrolase/fisiologia , Remodelação Vascular/efeitos dos fármacos , Animais , Azacitidina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , PTEN Fosfo-Hidrolase/genética , Fator de Crescimento Derivado de Plaquetas/farmacologia , Regiões Promotoras Genéticas
11.
Arterioscler Thromb Vasc Biol ; 40(2): 394-403, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31852223

RESUMO

OBJECTIVE: Pathological vascular remodeling and excessive perivascular fibrosis are major contributors to reduced vessel compliance that exacerbates cardiovascular diseases, for instance, promoting clinically relevant myocardial remodeling. Inflammation plays a significant role in both pathological vascular remodeling and fibrosis. We previously demonstrated that smooth muscle cell-specific PTEN depletion promotes significant vascular fibrosis and accumulation of inflammatory cells. In the current study, we aimed to determine the beneficial role of systemic PTEN elevation on Ang II (angiotensin II)-induced vascular fibrosis and remodeling. Approach and Results: Transgenic mice carrying additional copies of the wild-type Pten gene (super PTEN [sPTEN]) and WT littermates were subjected to Ang II or saline infusion for 14 or 28 days. Compared with WT, Ang II-induced vascular fibrosis was significantly blunted in sPTEN mice, as shown by histochemical stainings and label-free second harmonic generation imaging. The protection against Ang II was recapitulated in sPTEN mice bearing WT bone marrow but not in WT mice reconstituted with sPTEN bone marrow. Ang II-induced elevation of profibrotic and proinflammatory gene expression observed in WT mice was blocked in aortic tissue of sPTEN mice. Immunofluorescent staining and flow cytometry both indicated that perivascular infiltration of T cells and macrophages was significantly inhibited in sPTEN mice. In vitro induction of PTEN expression suppressed Ang II-induced Ccl2 expression in vascular smooth muscle cells. CONCLUSIONS: Systemic PTEN elevation mediates protection against Ang II-induced vascular inflammation and fibrosis predominantly through effects in resident vascular cells. Our data highly support that pharmacological upregulation of PTEN could be a novel and viable approach for the treatment of pathological vascular fibrosis.


Assuntos
Regulação da Expressão Gênica , Músculo Liso Vascular/metabolismo , PTEN Fosfo-Hidrolase/genética , Doenças Vasculares/genética , Remodelação Vascular/genética , Angiotensina II/toxicidade , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Citometria de Fluxo , Masculino , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/patologia , PTEN Fosfo-Hidrolase/biossíntese , RNA/genética , Ratos , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA