Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36766136

RESUMO

This study investigated the impacts of the complete substitution of sucrose by maltitol and/or sorbitol on the dough-crumb transition in biscuits. To this end, the phenomena of starch gelatinization/melting were studied at different moisture contents, both in the biscuit dough and model systems, by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and by environmental scanning electron microscopy (ESEM). Observation of doughs in ESEM revealed sorbitol had a structure very different from sucrose and maltitol crystals. After forming the dough pieces, it could be seen that at least some sugar and maltitol crystals were still present while sorbitol flakes were solubilized. At a limiting real water content (~20% dry basis), adding sweeteners to the mixture increased the gelatinization temperature, more markedly for sucrose and maltitol, as well as increasing the enthalpy. These results were confirmed by the model systems analyses. The calorimetric study with mixing batch cells revealed that sorbitol dissolved completely while maltitol and sucrose competed with the flour constituents to capture water. The proportion of water available for the sorption of the starch grain and its gelatinization was therefore different according to the affinity of the sweetener for water, and might influence the degree and temperature of starch gelatinization/melting.

2.
Foods ; 10(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34828826

RESUMO

Overconsumption of sugars in diets is associated with many health problems, including dental diseases, diabetes and obesity. However, removing sugar from products such as biscuits is still a challenge for manufacturers and has been limited in Europe since the evolution of the EU regulation in January 2018, allowing only polyols and non-sweetening bulking agents as sugar substitutes. This study investigated the effects of fully replacing sugar with two polyols, maltitol and sorbitol, in short-dough biscuits. Morphological, textural and visual characteristics were studied as well as sensory properties. The reformulated biscuits were more compact in shape and structure. They were also less prone to checking, which was attributed to a more homogeneous water distribution at the end of baking, especially with sorbitol. Polyol biscuits were surprisingly colourful, especially sorbitol ones, although polyols are not normally involved in Maillard reactions. Sensory tests, however, showed a depreciation of the products compared to the control. Sorbitol biscuits were the least preferred but maltitol ones were quite well accepted compared to the control. Thus, maltitol is an excellent potential substitute for this type of product.

3.
Mar Drugs ; 17(1)2019 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-30669426

RESUMO

Articular cartilage is an avascular, non-innervated connective tissue with limited ability to regenerate. Articular degenerative processes arising from trauma, inflammation or due to aging are thus irreversible and may induce the loss of the joint function. To repair cartilaginous defects, tissue engineering approaches are under intense development. Association of cells and signalling proteins, such as growth factors, with biocompatible hydrogel matrix may lead to the regeneration of the healthy tissue. One current strategy to enhance both growth factor bioactivity and bioavailability is based on the delivery of these signalling proteins in microcarriers. In this context, the aim of the present study was to develop microcarriers by encapsulating Transforming Growth Factor-ß1 (TGF-ß1) into microparticles based on marine exopolysaccharide (EPS), namely GY785 EPS, for further applications in cartilage engineering. Using a capillary microfluidic approach, two microcarriers were prepared. The growth factor was either encapsulated directly within the microparticles based on slightly sulphated derivative or complexed firstly with the highly sulphated derivative before being incorporated within the microparticles. TGF-ß1 release, studied under in vitro model conditions, revealed that the majority of the growth factor was retained inside the microparticles. Bioactivity of released TGF-ß1 was particularly enhanced in the presence of highly sulphated derivative. It comes out from this study that GY785 EPS based microcarriers may constitute TGF-ß1 reservoirs spatially retaining the growth factor for a variety of tissue engineering applications and in particular cartilage regeneration, where the growth factor needs to remain in the target location long enough to induce robust regenerative responses.


Assuntos
Alteromonas/química , Portadores de Fármacos/química , Polissacarídeos/química , Fator de Crescimento Transformador beta1/administração & dosagem , Disponibilidade Biológica , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/fisiologia , Linhagem Celular , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Portadores de Fármacos/isolamento & purificação , Composição de Medicamentos/métodos , Implantes de Medicamento , Liberação Controlada de Fármacos , Humanos , Fontes Hidrotermais/microbiologia , Microfluídica , Polissacarídeos/isolamento & purificação , Regeneração/efeitos dos fármacos , Alicerces Teciduais/química , Fator de Crescimento Transformador beta1/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA