Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animal ; 14(6): 1313-1321, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31931892

RESUMO

Brominated flame retardants (BFR) are primarily used as flame retardant additives in insulating materials. These lipophilic compounds can bioaccumulate in animal tissues, leading to human exposure via food ingestion. Although their concentration in food is not yet regulated, several of these products are recognised as persistent organic pollutants; they are thought to act as endocrine disruptors. The present study aimed to characterise the occurrence of two families of BFRs (hexabromocyclododecane (HBCDD) and polybrominated diphenyl ethers (PBDE)) in hen eggs and broiler or pig meat in relation to their rearing environments. Epidemiological studies were carried out on 60 hen egg farms (34 without an open-air range, 26 free-range), 57 broiler farms (27 without an open-air range, 30 free-range) and 42 pig farms without an open-air range in France from 2013 to 2015. For each farm, composite samples from either 12 eggs, five broiler pectoral muscles or three pig tenderloins were obtained. Eight PBDE congeners and three HBCDD stereoisomers were quantified in product fat using gas chromatography-high-resolution mass spectrometry, or high-performance liquid chromatography-tandem mass spectrometry, respectively. The frequencies of PBDE detection were 28% for eggs (median concentration 0.278 ng/g fat), 72% for broiler muscle (0.392 ng/g fat) and 49% for pig muscle (0.403 ng/g fat). At least one HBCDD stereoisomer was detected in 17% of eggs (0.526 ng/g fat), 46% of broiler muscle (0.799 ng/g fat) and 36% of pig muscle (0.616 ng/g fat). Results were similar in concentration to those obtained in French surveillance surveys from 2012 to 2016. Nevertheless, the contamination of free-range eggs and broilers was found to be more frequent than that of conventional ones, suggesting that access to an open-air range could be an additional source of exposure to BFRs for animals. However, the concentration of BFRs in all products remained generally very low. No direct relationship could be established between the occurrence of BFRs in eggs and meat and the characteristics of farm buildings (age, building materials). The potential presence of BFRs in insulating materials is not likely to constitute a significant source of animal exposure as long as the animals do not have direct access to these materials.


Assuntos
Monitoramento Ambiental/métodos , Retardadores de Chama/análise , Carne/análise , Agricultura , Animais , Galinhas , Poluentes Ambientais/química , Fazendas , França , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Suínos
2.
Animal ; 9(5): 888-98, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25466357

RESUMO

Free-range birds such as organic broilers may ingest soil and plants during exploration. The estimation of such intakes is of great interest to quantify possible nutritional supplies and also to evaluate the risk of exposure to parasites or to environmental contaminants. Marker-based techniques are now available and would allow to quantify plant and, especially, soil intake in free-range birds, and this quantification was the aim of this study. Methodologically, the proportion of plants in diet intake was determined first using a method based on n-alkanes. Subsequently, the fraction of soil in the total intake was estimated with a second marker, acid-insoluble ash. This approach was carried out to estimate ingested amounts of plants and soil for five successive flocks of organic broilers, exploring grass-covered yards or those under trees, at two time points for each yard: 51 and 64 days of age. Each factor combination (yard type×period=flock number×age) was repeated on two different yards of 750 broilers each. The birds' plant intake varied widely, especially on grass-covered yards. The proportion of plant intake was significantly higher on grass-covered plots than under trees and was also affected, but to a lesser extent, by age or flock number. The ingestion of plants would generally not exceed 11 g of DM daily, except two extreme outliers of nearly 30 g. The daily plant intake under trees tended to be lower and never exceeded 7 g of DM. The amount of ingested plants increased significantly for spring flocks. It increased slightly but significantly with age. The proportion of ingested soil was significantly higher under trees than on grass-covered yards. Dry soil intake was generally low with not more than 3 g per day. Only in adverse conditions - that is, older birds exploring yards under trees in winter - soil intake reached the extreme value of nearly 5 g. Broilers on yards under trees ingested significantly more soil than on grass-covered yards with least square means of, respectively, 2.1 and 1.1 g dry soil per day. These quantifications would allow us to evaluate the impact of plant and soil intake in the management of free-range broilers, especially for the management in organic farming systems. Nevertheless, under the two rearing conditions tested in the current study, the quite low proportions of soil intakes would represent a low risk for the safety of the produced food, unless the birds explore yards on heavily contaminated soil.


Assuntos
Criação de Animais Domésticos , Galinhas/fisiologia , Meio Ambiente , Comportamento Alimentar , Agricultura Orgânica , Alcanos/análise , Ração Animal/análise , Animais , Dieta/veterinária , Feminino , Masculino , Solo/química
3.
Environ Geochem Health ; 36(5): 911-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24729076

RESUMO

The pollution of soil with the pesticide chlordecone (CLD) is a problem for the use of agricultural surfaces even years after its use has been forbidden. Therefore, the exposure of free-ranged animals such as ruminants needs to be investigated in order to assess the risk of contamination of the food chain. Indeed, measured concentrations could be integrated in a lowered extent if the soil binding would reduce the bioavailability of the pesticide. This bioavailability of soil-bound CLD in a heavily polluted andosol has been investigated relatively of CLD given via spiked oil. Twenty-four weaned lambs were exposed to graded doses of 2, 4 or 6 µg CLD/kg body weight during 15 days via the contaminated soil in comparison to spiked oil. The concentration of this pesticide has been determined in two target tissues: blood serum and kidney fat. The relative bioavailability (RBA) corresponds to the slope ratio between the test matrix-contaminated soil- in comparison to the reference matrix oil. The RBA of the soil-bound CLD was not found to significantly differ from the reference matrix oil in lambs meaning that the pesticide ingested by grazing ruminants would not be sequestered by soil binding. Therefore, CLD from soil gets bioavailable within the intestinal level and exposure to contaminated soil has to be integrated in risk assessments.


Assuntos
Clordecona/metabolismo , Inseticidas/metabolismo , Ovinos/metabolismo , Poluentes do Solo/metabolismo , Ração Animal , Animais , Clordecona/análise , Clordecona/sangue , Inseticidas/análise , Inseticidas/sangue , Gordura Intra-Abdominal/metabolismo , Medição de Risco , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/química
4.
Animal ; 7(1): 47-59, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23031634

RESUMO

Zinc (Zn) is essential for swine and poultry and native Zn concentrations in feedstuffs are too low to meet their Zn requirement. Dietary Zn bioavailability is affected by phytate, phytase and Zn supplemented in organic form is considered as more bioavailable than inorganic sources. A meta-analysis using GLM procedures was processed using broiler and piglet databases to investigate, within the physiological response of Zn, (1) the bioavailability of inorganic and organic Zn sources (Analysis I); (2) the bioavailability of native and inorganic Zn dependent from dietary phytates, vegetal and supplemental phytase activity (Analysis II). Analysis I: the bioavailability of organic Zn relative to inorganic Zn sources ranged, depending on the variable, from 85 to 117 never different from 100 (P > 0.05). The coefficients of determination of the regressions were 0.91 in broilers and above 0.89 in piglets. Analysis II: in broilers, bone Zn was explained by supplemental Zn (linear and quadratic, P < 0.001) and by supplemental phytase (linear, P < 0.001). In piglets, the interaction between dietary Zn and phytates/phytases was investigated by means of a new variable combining dietary phytic phosphorus (PP) and phytase activity. This new variable represents the remaining dietary PP after its hydrolysis in the digestive tract, mainly due to phytase and is called non-hydrolyzed phytic phosphorus (PP(NH)). Bone Zn was increased with native Zn (P < 0.001), but to a lower extent in high PP or low phytase diets (ZN(N) × PP(NH), P < 0.001). In contrast, the increase in bone zinc in response to supplemental Zn (P < 0.001) was not modulated by PP(NH) (P > 0.05). The coefficients of determination of the regressions were 0.92 in broilers and above 0.92 in piglets. The results from the two meta-analyses suggest that (1) broilers and piglets use supplemented Zn, independent from Zn source; (2) broiler use native Zn and the use is slightly enhanced with supplemental phytase; (3) however, piglets are limited in the use of native Zn because of the antagonism of non-hydrolyzed dietary phytate. This explains the higher efficacy of phytase in improving Zn availability in this specie.


Assuntos
6-Fitase/administração & dosagem , Galinhas/metabolismo , Suplementos Nutricionais , Ácido Fítico/administração & dosagem , Sus scrofa/metabolismo , Compostos de Zinco/farmacocinética , 6-Fitase/metabolismo , Ração Animal/análise , Animais , Disponibilidade Biológica , Modelos Biológicos , Ácido Fítico/metabolismo , Compostos de Zinco/administração & dosagem , Compostos de Zinco/sangue , Compostos de Zinco/metabolismo , Sulfato de Zinco/administração & dosagem , Sulfato de Zinco/sangue , Sulfato de Zinco/metabolismo , Sulfato de Zinco/farmacocinética
5.
Animal ; 6(10): 1590-600, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23031558

RESUMO

Optimizing phosphorus (P) utilization in pigs requires improving our capacity to predict the amount of P absorbed and retained, with the main modulating factors taken into account, as well as precisely determining the P requirements of the animals. Given the large amount of published data on P utilization in pigs, a meta-analysis was performed to quantify the impact of the different dietary P forms, calcium (Ca) and exogenous phytases on the digestive and metabolic utilization criteria for dietary P in growing pigs. Accordingly, the amount of phytate P (PP) leading to digestible P (g/kg) was estimated to be 21%, compared with 73% for non-phytate P (NPP) from plant ingredients and 80% for NPP from mineral and animal ingredients (P < 0.001). The increase in total digestible dietary P following the addition of microbial phytase (PhytM) from Aspergillus niger (P < 0.001) was curvilinear and about two times higher than the increase following the addition of plant phytase, which leads to a linear response (P < 0.001). The response of digestible P to PhytM also depends on the amount of substrate, PP (PhytM(2) × PP, P < 0.001). The digestibility of dietary P decreased with dietary Ca concentration (P < 0.01) independently of phytase but increased with body weight (BW, P < 0.05). Although total digestible dietary P increased linearly with total NPP concentration (P < 0.001), retained P (g/kg), average daily gain (ADG, g/day) and average daily feed intake (ADFI, g/day) increased curvilinearly (P < 0.001). Interestingly, whereas dietary Ca negatively affected P digestibility, the effect of dietary Ca on retained P, ADG and ADFI depended on total dietary NPP (NPP × Ca, P < 0.01, P < 0.05 and P < 0.01, respectively). Increasing dietary Ca reduced retained P, ADG and ADFI at low NPP levels, but at higher NPP concentrations it had no effect on ADG and ADFI despite a positive effect on retained P. Although the curvilinear effect of PhytM on digestible P increased with PP (P < 0.001), this effect was lessened by total NPP for ADG and ADFI (PhytM × NPP and PhytM(2) × NPP, P < 0.05) and depended on both total NPP and Ca for retained P (PhytM(2) × NPP × Ca, P < 0.01). This meta-analysis improves our understanding of P utilization, with major modulating factors taken into account. The information generated will be useful for the development of robust models to formulate environmentally friendly diets for growing pigs.


Assuntos
6-Fitase/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Cálcio da Dieta/metabolismo , Fósforo na Dieta/metabolismo , Suínos/fisiologia , Ração Animal/análise , Criação de Animais Domésticos , Animais , Digestão , Suínos/crescimento & desenvolvimento
6.
J Anim Sci ; 89(11): 3596-611, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21680789

RESUMO

Environmental effects of excess P from manure and the soaring price of phosphates are major issues in pig production. To optimize P utilization, it is crucial to improve our capacity to predict the amount of P absorbed, while taking into account the main factors of variation. Mathematical modeling can represent the complexity of the processes and interactions in determining the digestive utilization of P in growing pigs. This paper describes and evaluates a model developed to simulate the fate of the dietary forms of P in the digestive tract of growing pigs, with particular emphasis on the effect of dietary Ca and exogenous phytase on P digestive utilization. The model consists of 3 compartments associated with specific anatomical sections: stomach, proximal small intestine, and distal small intestine. The main metabolic processes occurring in these sections are, respectively, P solubilization/insolubilization and phytate P hydrolysis, and P absorption and P insolubilization. Model parameters governing these flows were derived from in vitro and in vivo literature data. The sensitivity analysis revealed that the model was stable within a large range of model parameter values (±1.5 SD). The model was able to predict the efficacy of Aspergillus niger microbial phytase in accordance with literature values, as well as the decreased efficacy of plant phytase compared with microbial phytase. The prediction capabilities of the model were assessed by comparing actual and simulated P and Ca apparent total-tract digestibility (ATTD) based on published pig data not used for model development. Prediction of P digestibility across 66 experiments and 281 observations was adequate [P ATTD observed = 0.24 (SE, 0.943) + 0.98 (SE, 0.0196) × P ATTD predicted; R(2), 0.90; disturbance error (ED), 96.5%], whereas prediction of Ca digestibility across 47 experiments and 193 observations was less accurate (Ca ATTD observed = 11.1 + 0.75 × Ca ATTD predicted; R(2), 0.78; ED, 20.4%). A lack of agreement between experimental and simulated Ca digestibility was found. This model is, therefore, useful in evaluating P digestibility for different feedstuffs and feeding strategies. It can also be used to provide insight for improving dietary P utilization, especially from plant sources, by quantifying the effect of the mean sources of variation affecting P utilization.


Assuntos
Trato Gastrointestinal/metabolismo , Modelos Biológicos , Fósforo na Dieta/metabolismo , Suínos/metabolismo , 6-Fitase/metabolismo , Animais , Cálcio da Dieta/metabolismo , Simulação por Computador
7.
J Anim Sci ; 88(5): 1706-17, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20118415

RESUMO

The present study was conducted to assess the effect of 2 dietary Ca concentrations on P and Ca digestive and metabolic utilization in weanling pigs fed diets providing practical concentrations of P, with or without phytase. The responses of pigs fed diets adequate or moderately deficient in Ca and P postweaning were compared. A total of 60 pigs weaned at 28 d of age were used. Two groups of 30 pigs with differing mineral status resulted from a 10-d depletion period, during which the animals received depletion diets (DD) that consisted of corn-soybean meal with either 1.42% Ca and 0.80% P (DD+) or 0.67% Ca and 0.43% P (DD-), designed to achieve the same Ca:digestible P ratio. At the end of the depletion period, a plasma sample was taken from each pig and 12 pigs (6 from each group) were slaughtered for bone assessment to establish the baseline mineral status. The animals fed the DD- diet had signs of P deficiency with reduced plasma P (13%; P < 0.01) and femur ash concentration (8%; P < 0.05), and increased plasma Ca (9%; P < 0.05) and alkaline phosphatase activity (31%; P < 0.01). For the subsequent 25-d period, the remaining 24 pigs from each group were fed 1 of 4 repletion diets: 1) 0.56% P, 1.06% Ca; 2) 0.56% P, 0.67% Ca; 3) diet 1 + 1,000 phytase units (FTU) of Natuphos phytase/kg; and 4) diet 2 + 1,000 FTU of Natuphos phytase/kg. Total feces and urine were collected from d 5 to 11, and a blood sample was taken from each pig at d 11 and 25. The initial moderate P deficiency (DD-) stimulated Ca absorption (5%; P < 0.01), irrespective of the repletion diet, and stimulated P absorption (5%; DD x phytase, P < 0.05), only when the diets contained phytase. At the end of the repletion period, because of these compensatory phenomena, the depleted pigs achieved full recovery of femur DM and ash weight when they received phytase, whereas ash concentration tended to remain reduced by 3% (P = 0.08). Phosphorus digestibility was improved in the diets supplemented with phytase (73.0 vs. 56.0%; P < 0.001), whereas an increase in dietary Ca decreased P digestibility (65.6 vs. 63.4%; P < 0.05). Those 2 effects were independent, indicating that dietary Ca reduced equally P digestibility with and without phytase and did not influence the efficiency of phytase in releasing P in the digestive tract. In pigs fed diets with phytase, however, the reduction of Ca (Ca:P from 1.9 to 1.3) increased urinary P losses 5-fold. Those extra losses were due to a lack of Ca for skeleton ash deposition, resulting in a 4% reduction in femur ash concentration. In the end, reducing the dietary Ca:P from 1.9 to 1.3 in a practical diet containing 0.56% P did not improve the efficiency of phytase in releasing P. Moreover, the reduction in dietary Ca (Ca:P) caused an imbalance between Ca and P that impaired bone mineralization.


Assuntos
6-Fitase/farmacologia , Cálcio da Dieta/farmacologia , Cálcio/metabolismo , Fósforo/metabolismo , 6-Fitase/administração & dosagem , Animais , Densidade Óssea/efeitos dos fármacos , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Feminino , Masculino , Minerais , Suínos , Desmame
8.
Animal ; 4(2): 200-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22443873

RESUMO

The study was conducted to evaluate the effects of dietary zinc addition (0 or 15 mg/kg of Zn as inorganic or organic zinc) to three maize-soybean meal basal diets varying in their native Zn, phytic P contents and phytase activity (expressed in kg of feed: P- with 25 mg Zn and 1.3 g phytic P, P+ with 38 mg Zn and 2.3 g phytic P or P+/ENZ being P+ including 500 units (FTU) of microbial phytase per kg) in two monogastric species (piglets, broilers). Measured parameters were growth performance, zinc status (plasma, and bone zinc) and soluble zinc in digesta (stomach, gizzard and intestine). The nine experimental diets were fed for 20 days either to weaned piglets (six replicates per treatment) or to 1-day-old broilers (10 replicates per treatment). Animal performance was not affected by dietary treatments (P > 0.05) except that all P- diets improved body weight gain and feed conversion ratio in piglets (P < 0.05). Piglets fed P- diets had a better Zn status than those fed P+ diets (P < 0.05). In both species, Zn status was improved with supplemental Zn (P < 0.05), irrespective of Zn source. Phytase supplementation improved piglet Zn status to a higher extent than adding dietary Zn, whereas in broilers, phytase was less efficient than supplemental Zn. Digestive Zn concentrations reflected the quantity of ingested Zn. Soluble Zn (mg/kg dry matter) and Zn solubility (% of total Zn content) were highest in gizzard contents, which also presented lower pH values than stomach or intestines. The intestinal Zn solubility was higher in piglet fed organic Zn than those fed inorganic Zn (P < 0.01). Phytase increased soluble Zn in piglet stomach (P < 0.001) and intestine (P = 0.1), but not in broiler gizzard and intestinal contents. These results demonstrate (i) that dietary zinc was used more efficiently by broilers than by piglets, most probably due to the lower gizzard pH and its related higher zinc solubility; (ii) that zinc supplementation, irrespective of zinc source, was successful in improving animal's zinc status; and (iii) suggest that supplemented Zn availability was independent from the diet formulation. Finally, the present data confirm that phytase was efficient in increasing digestive soluble Zn and improving zinc status in piglets. However, the magnitude of these effects was lower in broilers probably due to the naturally higher Zn availability in poultry than in swine.

9.
Animal ; 4(11): 1844-53, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22445145

RESUMO

Pollution relative to phosphorus excretion in poultry manure as well as the soaring prices of phosphate, a non-renewable resource, remain of major importance. Thus, a good understanding of bird response regarding dietary phosphorus (P) is a prerequisite to optimise the utilisation of this essential element in broiler diets. A database built from 15 experiments with 203 treatments was used to predict the response of 21-day-old broilers to dietary non-phytate P (NPP), taking into account the main factors of variation, calcium (Ca) and microbial phytase derived from Aspergillus niger, in terms of average daily feed intake (ADFI), average daily gain (ADG), gain to feed (G:F) and tibia ash concentration. All criteria evolve linearly (P < 0.001) and quadratically (P < 0.001) with dietary NPP concentration. Dietary Ca affected the intercept and linear component for ADG (P < 0.01), G:F (P < 0.05) and tibia ash concentration (P < 0.001), whereas for ADFI, it affected only the intercept (P < 0.01). Microbial phytase addition impacted on the intercept, the linear and the quadratic coefficient for ADFI (P < 0.01), ADG (P < 0.001) and G:F (P < 0.05), and on the intercept and the linear component (P < 0.001) for tibia ash concentration. An evaluation of these models was then performed on a database built from 28 experiments and 255 treatments that were not used to perform the models. Results showed that ADFI, ADG and Tibia ash concentration were predicted fairly well (slope and intercept did not deviate from 0 to 1, respectively), whereas this was not the case for G:F. The increase in dietary Ca concentration aggravated P deficiency for all criteria while phytase addition had a positive effect. The more P deficiency was marked, the more the bird response to ADFI, ADG, G:F and tibia ash concentration was exacerbated. It must also be considered that even if the decrease in dietary Ca may improve P utilisation, it could in turn become limiting for bone mineralisation. In conclusion, this meta-analysis provides ways to reduce dietary P in broiler diets without impairing performance, taking into account dietary Ca and microbial phytase.

10.
Br Poult Sci ; 49(6): 705-15, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19093243

RESUMO

1. The impact of modified mineral status and dietary Ca:P ratio on Ca and P utilisation was measured in chicks with or without phytase supplementation. 2. In a preliminary study, 4 diets were given to chicks from 3 to 15 d of age: D1 (6.5 g P/kg and Ca:P = 1.5) and D2, D3 and D4 (6.0, 5.4 and 5.0 g P/kg, respectively, and Ca:P = 1.2). Growth performance was similar across diets. Tibia ash was similar in chicks given D1 and D2, but was gradually depressed from D2 to D4 (-22%). 3. In the depletion period, two groups of chicks, with similar performance, but with different mineral status were achieved by feeding them, from 5 to 15 d of age, diets with a similar Ca:P ratio of 1.2, but containing 6.3 or 5.2 g P/kg. 4. During the subsequent 11 d of the repletion period, chicks from each of the two previous groups were given one of the 4 diets containing 5.7 g P/kg, but differing in their Ca (8.3 and 5.3 g Ca/kg) and microbial phytase (0 or 1000 FTU, Natuphos levels in a 2 x 2 x 2 factorial arrangement. 5. At the end of the repletion period, the initially depleted chicks could not be differentiated from the non-depleted chicks, indicating the capacity of chicks to compensate for their initial depleted mineral status. 6. Interaction between dietary Ca and phytase levels was not significant. Phytase improved growth performance and bone characteristics. Reduced dietary Ca enhanced feed intake and growth rate, but depressed bone dry matter and ash weight. 7. At the end, diets supplemented with phytase maximised bone ash weight when chicks were fed with a Ca:P ratio of 1.5 but elicited the highest growth rate when chicks were fed with a Ca:P ratio of 0.9.


Assuntos
6-Fitase/farmacologia , Desenvolvimento Ósseo/efeitos dos fármacos , Cálcio da Dieta/metabolismo , Cálcio/deficiência , Galinhas/crescimento & desenvolvimento , Suplementos Nutricionais , Fósforo na Dieta/metabolismo , Ração Animal , Animais , Galinhas/metabolismo , Ingestão de Alimentos , Tíbia/anatomia & histologia , Tíbia/crescimento & desenvolvimento , Tíbia/fisiologia
11.
J Anim Sci ; 86(7): 1598-608, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18375665

RESUMO

Ten 56-d-old, 15-kg barrows were surgically fitted with a postvalvular T-cecum cannula at the ileo-cecal junction to evaluate the effect of microbial phytase on apparent and true ileal AA digestibility and N utilization. A semipurified cornstarch- and soybean meal-based diet was formulated to contain 3.4 Mcal of DE/kg, 17.0% CP, 0.8% Ca, and 0.6% P but had a low phytate-P concentration (0.13%; all on an as-fed basis). Chromic oxide and dysprosium chloride were used as indigestible markers. The basal diet was supplemented with 0 or 1,000 phytase units/kg of microbial phytase. Postprandial plasma urea N and alpha-amino N concentrations, excretion of Ca, P, and N in feces and urine, and ileal AA digestibilities were determined 3 times at 4-wk intervals beginning at 70 d of age. The homoarginine (HA) method was used to determine endogenous AA flow by replacing 50% of the basal protein with guanidinated protein. Microbial phytase had no effect on apparent ileal digestibility (AID) or on true ileal digestibilities of N and most AA but did increase AID for arginine (P = 0.006) and methionine (P = 0.037). However, in HA diets, phytase increased the AID of CP (P = 0.01) and several AA. Addition of microbial phytase had no effect on the postprandial alpha-amino N concentrations in plasma but increased overall plasma urea N concentrations (P = 0.035). Barrows fed phytase-supplemented diets had decreased P in feces (P = 0.003) and greater P in urine (P = 0.001) but comparable total P excretion compared with barrows fed no phytase-supplemented diets. In conclusion, the addition of phytase to a semi-purified soybean meal-based diet did not affect the AID of several AA. In addition, differences between the basal and HA diets in N digestibilities indicated that that guanidination may limit the use of the HA method in determining endogenous protein losses.


Assuntos
6-Fitase/farmacologia , Aminoácidos/metabolismo , Íleo/metabolismo , Nitrogênio/metabolismo , Suínos/metabolismo , 6-Fitase/metabolismo , Aminoácidos/sangue , Animais , Cálcio/urina , Digestão/efeitos dos fármacos , Fezes/química , Homoarginina/metabolismo , Íleo/efeitos dos fármacos , Masculino , Nitrogênio/sangue , Nitrogênio/urina , Fósforo/urina , Distribuição Aleatória , Suínos/urina
12.
Animal ; 2(6): 859-66, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22443665

RESUMO

The objectives of this study were to determine the effect of the chemical form of selenium (Se) fed to sows (1) on production and immune quality of colostrum and (2) on piglet response to a deterioration of sanitary conditions after weaning. Twenty-two pregnant sows were assigned to receive a diet supplemented with 0.3 ppm Se from either sodium selenite (inorganic Se) or Se-enriched yeast (organic Se as Sel-Plex®; Alltech Inc., Nicholasville, KY, USA). Dietary treatments were applied during the last month of pregnancy and lactation. Blood samples were collected on sows before dietary treatment, on the day of weaning and 6 weeks later, and on three to five piglets within litters at birth, at weaning and 6 weeks post weaning. Whole blood was analysed for Se concentration. Colostrum samples were collected at 0, 3, 6 and 24 h post partum and milk samples on days 14 and 27 of lactation. Colostrum and milk were analysed for Se and immunoglobulin G (IgG) concentrations. At weaning, 40 pairs of littermate piglets were moved to rooms where sanitary conditions were good or purposely deteriorated. Piglets were reared individually and fed ad libitum. After 15 days, piglets and feed refusals were weighed and a blood sample was collected to measure plasma haptoglobin concentration. When sows were fed organic Se, Se concentrations were increased by 33% in colostrum (P < 0.05), 89% in milk (P < 0.001) and by 28% in whole blood of piglets at weaning (P < 0.001). Colostrum production during the 24 h after the onset of farrowing and IgG concentrations in colostrum and milk did not significantly differ between the two groups of sows. Weaned piglets reared in good sanitary conditions grew faster (P < 0.001) than piglets housed in poor conditions. Sanitary conditions did not influence mean plasma haptoglobin concentrations of piglets (P > 0.1). The source of Se fed to the dams did not influence piglet performance or haptoglobin concentrations after weaning. These findings confirm that, compared with inorganic Se, organic Se fed to the dam is better transferred to colostrum and milk, and consequently to piglets. They indicate that the Se source influences neither colostrum production nor IgG concentrations in colostrum, and that the higher Se contents of piglets does not limit the reduction of growth performance when weaning occurs in experimentally deteriorated sanitary conditions.

13.
Br Poult Sci ; 48(6): 678-89, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18085450

RESUMO

1. A total of 30 varieties and selection lines of triticale grown under similar conditions were characterised. Thousand grain weight, specific weight, Hagberg falling number and N were 50.2 +/- 5.0 g, 72.4 +/- 2.1 kg/hl, 96 +/- 48 s and 16.1 +/- 0.11 g/kg, respectively. 2. Mean phosphorus (P) concentration was 2.86 +/- 0.31 g/kg, of which 77% was of phytic origin. Mean phytase activity was 1018 +/- 319 phytase units (PU)/kg. A genotypic effect on phytase activity was detected amongst 5 varieties studied out of 30. Potential and real applied viscosities were positively correlated and mean values were 3.53 +/- 0.66 and 2.15 +/- 0.31 ml/g, respectively. 3. The efficacy of plant phytase in improving P availability was assessed in chickens up to 3 weeks of age. Growth performance and bone ash concentration were compared in birds given either a maize (450 g/kg) and soybean meal (230 g/kg) phosphorus deficient diet containing 3.5 g P/kg, this basal diet supplemented with 1 or 2 g P/kg as monocalcium phosphate (MCP) or triticale (450 g/kg) and soybean meal (230 g/kg) diets containing 3.2 to 3.8 g P/kg with no MCP. To achieve graded levels of phytase activity, 4 varieties of triticale, intact or in which phytase was denaturated by heat treatment, were used. Estimated metabolisable energy, protein, amino acids and calcium concentrations were similar in all diets. 4. Phytase activity in the triticale-based diets ranged between 135 and 1390 PU/kg. Growth performance and bone ash were responsive to plant phytase and to MCP. Non-linear models of these responses were adjusted with the best fit for bone ash parameters. The values of 250, 500 and 1000 PU of plant phytase were estimated to be equivalent to 0.46, 0.67 and 0.81 g P as MCP, respectively.


Assuntos
6-Fitase/metabolismo , Galinhas/crescimento & desenvolvimento , Grão Comestível/enzimologia , Grão Comestível/genética , Fósforo/farmacologia , Ácido Fítico/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Disponibilidade Biológica , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Dieta/veterinária , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Europa (Continente) , Masculino , Minerais , Fósforo/metabolismo
14.
Animal ; 1(6): 804-11, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22444743

RESUMO

The experiment was conducted to evaluate the sparing effect of microbial phytase on the need for dietary zinc supplementation in chicks. A maize-soya-bean meal basal diet, containing 33 mg of zinc and 16 mg of copper per kg, supplemented with 0, 6, 12, 18, 24, 30 or 60 mg of zinc as sulphate per kg or with 250, 500, 750 or 1000 units (FTU) of microbial phytase (3-phytase from Aspergillus niger, Natuphos®) per kg was given to 1-day-old chicks for 20 days. Sixteen chicks placed in individual cages were assigned to each diet except the unsupplemented basal diet which was assigned to 32 cages. Actual range of phytase supplementation was 280 to 850 FTU per kg diet. Growth performance was not affected by microbial phytase. Chicks given the unsupplemented basal diet and the basal diet supplemented with 60 mg of zinc per kg displayed similar performance. Bone weight, bone ash, liver weight and liver dry matter were independent (P > 0.1) of zinc and phytase supplementations. Plasma, bone and liver zinc concentrations increased linearly (P < 0.001) and quadratically (P < 0.001; P < 0.001 and P < 0.05, respectively) with zinc added. Plasma zinc tended to increase linearly (P = 0.07) and bone zinc increased linearly (P < 0.01) with phytase added but no quadratic response was detected (P > 0.1). Liver zinc was unresponsive to phytase added (P > 0.1). Liver copper decreased linearly (P < 0.001) and quadratically (P < 0.01) with zinc supplementation. Mathematical functions were fitted to the responses of plasma and bone zinc to zinc and phytase added and used to calculate zinc equivalency values of phytase. The models included a linear plateau response to zinc added and a linear response to phytase added. In diets without phytase, plasma and bone zinc concentrations were maximised for a dietary zinc concentration of 55 and 51 mg/kg, respectively. Over the range of 280 to 850 FTU, 100 FTU was equivalent to 1 mg of zinc as sulphate. Consequently, in a maize-soya-bean meal chicken diet formulated to contain 60 mg zinc per kg, zinc ingested, and in turn, zinc excreted may be reduced by around 10% if the diet contains 500 FTU as Natuphos® per kg.

15.
J Anim Physiol Anim Nutr (Berl) ; 90(1-2): 50-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16422770

RESUMO

Fifty-four pigs, weaned at 26 days of age at an average body weight of 7.74 kg were used in a 26-day experiment to assess the zinc requirement of piglets, using diets based on maize and soybean meal, with or without microbial phytase. The nine experimental diets were the basal diet containing 33 mg of zinc/kg supplemented with 10, 25, 40, 60 or 80 mg of zinc as sulphate (ZnSO(4), 7H(2)O)/kg and the basal diet supplemented with 0, 10, 25 or 40 mg of zinc as sulphate/kg and 700 units (U) of microbial phytase (Natuphos)/kg. Pigs were fed the basal diet for a 7-day adjustment period prior to the 19-day experimental period. Microbial phytase enhanced plasma alkaline phosphatase (AP) activity, plasma zinc and bone zinc concentrations. These parameters increased linearly with zinc intake, with a similar slope with and without phytase. The response of bone zinc-to-zinc added did not plateau. Without microbial phytase, plasma AP activity and zinc concentration were maximized when dietary zinc reached 86 and 92 mg/kg respectively. With microbial phytase they were maximized when dietary zinc concentration reached 54 and 49 mg/kg respectively. Accounting for a safety margin, the recommended supply of zinc for weaned piglets up to 16 kg fed maize-soybean meal diets supplemented with zinc as sulphate is thus of 100-110 mg/kg diet. This supply may be reduced by around 35 mg if the diet is supplemented with 700 U of microbial phytase.


Assuntos
6-Fitase/administração & dosagem , Necessidades Nutricionais , Suínos/crescimento & desenvolvimento , Zinco/administração & dosagem , Zinco/sangue , 6-Fitase/metabolismo , Fosfatase Alcalina/metabolismo , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Masculino , Distribuição Aleatória , Segurança , Suínos/metabolismo , Desmame , Aumento de Peso , Zinco/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA