Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 28(4): 628-638, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30351356

RESUMO

Mutations in the collagen genes COL4A1 and COL4A2 cause Mendelian eye, kidney and cerebrovascular disease including intracerebral haemorrhage (ICH), and common collagen IV variants are a risk factor for sporadic ICH. COL4A1 and COL4A2 mutations cause endoplasmic reticulum (ER) stress and basement membrane (BM) defects, and recent data suggest an association of ER stress with ICH due to a COL4A2 mutation. However, the potential of ER stress as a therapeutic target for the multi-systemic COL4A1 pathologies remains unclear. We performed a preventative oral treatment of Col4a1 mutant mice with the chemical chaperone phenyl butyric acid (PBA), which reduced adult ICH. Importantly, treatment of adult mice with the established disease also reduced ICH. However, PBA treatment did not alter eye and kidney defects, establishing tissue-specific outcomes of targeting Col4a1-derived ER stress, and therefore this treatment may not be applicable for patients with eye and renal disease. While PBA treatment reduced ER stress and increased collagen IV incorporation into BMs, the persistence of defects in BM structure and reduced ability of the BM to withstand mechanical stress indicate that PBA may be counter-indicative for pathologies caused by matrix defects. These data establish that treatment for COL4A1 disease requires a multipronged treatment approach that restores both ER homeostasis and matrix defects. Alleviating ER stress is a valid therapeutic target for preventing and treating established adult ICH, but collagen IV patients will require stratification based on their clinical presentation and mechanism of their mutations.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Colágeno Tipo IV/genética , Terapia de Alvo Molecular , Animais , Membrana Basal/efeitos dos fármacos , Membrana Basal/patologia , Hemorragia Cerebral/genética , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Camundongos , Mutação , Fenilbutiratos/administração & dosagem
2.
Dis Model Mech ; 9(2): 165-76, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26839400

RESUMO

Collagen IV is a major component of basement membranes, and mutations in COL4A1, which encodes collagen IV alpha chain 1, cause a multisystemic disease encompassing cerebrovascular, eye and kidney defects. However, COL4A1 renal disease remains poorly characterized and its pathomolecular mechanisms are unknown. We show that Col4a1 mutations in mice cause hypotension and renal disease, including proteinuria and defects in Bowman's capsule and the glomerular basement membrane, indicating a role for Col4a1 in glomerular filtration. Impaired sodium reabsorption in the loop of Henle and distal nephron despite elevated aldosterone levels indicates that tubular defects contribute to the hypotension, highlighting a novel role for the basement membrane in vascular homeostasis by modulation of the tubular response to aldosterone. Col4a1 mutations also cause diabetes insipidus, whereby the tubular defects lead to polyuria associated with medullary atrophy and a subsequent reduction in the ability to upregulate aquaporin 2 and concentrate urine. Moreover, haematuria, haemorrhage and vascular basement membrane defects confirm an important vascular component. Interestingly, although structural and compositional basement membrane defects occurred in the glomerulus and Bowman's capsule, no tubular basement membrane defects were detected. By contrast, medullary atrophy was associated with chronic ER stress, providing evidence for cell-type-dependent molecular mechanisms of Col4a1 mutations. These data show that both basement membrane defects and ER stress contribute to Col4a1 renal disease, which has important implications for the development of treatment strategies for collagenopathies.


Assuntos
Membrana Basal/metabolismo , Colágeno Tipo IV/genética , Estresse do Retículo Endoplasmático , Glomérulos Renais/patologia , Túbulos Renais/patologia , Mutação , Animais , Humanos , Glomérulos Renais/metabolismo , Túbulos Renais/metabolismo , Camundongos
3.
Cornea ; 32(1): 76-80, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22968356

RESUMO

PURPOSE: To determine the short-term fate of the host endothelium and Descemet membrane after non-Descemet stripping automated endothelial keratoplasty (nDSAEK). METHODS: Eight unilateral DSAEK (n = 4) or nDSAEK (n = 4) surgeries were performed in the right eyes of 8 rabbits. Corneal transparency and thickness were followed-up by slit-lamp microscopy, and 2 weeks postoperatively, corneas were evaluated by immunohistochemistry and transmission electron microscopy. RESULTS: Corneas remained clear after both DSAEK and nDSAEK. One week after DSAEK, the stroma-to-stroma surgical interface was identifiable as a zone of fibrotic tissue a few microns thick, whereas in the nDSAEK group, the recipient corneal endothelium and Descemet membrane were clearly visible at the graft-host interface. The retained endothelial cells were positive for Na/K-ATPase but assumed a markedly different morphology from healthy endothelial cells, with cell processes extending into the graft stroma or engulfing strands of irregularly dissected grafted stromal tissue where they occasionally appeared to compartmentalize the transplanted matrix and became detached from the underlying Descemet membrane. CONCLUSIONS: Host endothelial cells 2 weeks after nDSAEK express markers of pump function, but appear to be morphologically altered, occasionally detaching from the adjacent Descemet membrane, extending into the graft stroma or engulfing strands of the grafted stroma at the interface. The short-term persistence and subsequent phenotypical alternation of residual endothelial cells, aligned to structural changes to Descemet membrane, might influence graft adherence after nDSAEK.


Assuntos
Lâmina Limitante Posterior/ultraestrutura , Ceratoplastia Endotelial com Remoção da Lâmina Limitante Posterior , Endotélio Corneano/ultraestrutura , Animais , Córnea/fisiologia , Lâmina Limitante Posterior/enzimologia , Endotélio Corneano/enzimologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Coelhos , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA