Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 18(7): 727-732, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169897

RESUMO

A series of recent experiments have shown that collision of ballistic electrons in semiconductors can be used to probe the indistinguishability of single-electron wavepackets. Perhaps surprisingly, their Coulomb interaction has not been seen due to screening. Here we show Coulomb-dominated collision of high-energy single electrons in counter-propagating ballistic edge states, probed by measuring partition statistics while adjusting the collision timing. Although some experimental data suggest antibunching behaviour, we show that this is not due to quantum statistics but to strong repulsive Coulomb interactions. This prevents the wavepacket overlap needed for fermionic exchange statistics but suggests new ways to utilize Coulomb interactions: microscopically isolated and time-resolved interactions between ballistic electrons can enable the use of the Coulomb interaction for high-speed sensing or gate operations on flying electron qubits.

2.
Phys Rev Lett ; 128(2): 027701, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089765

RESUMO

Integrating the Kondo correlation and spin-orbit interactions, each of which have individually offered unprecedented means to manipulate electron spins, in a controllable way can open up new possibilities for spintronics. We demonstrate electrical control of the Kondo correlation by coupling the bound spin to leads with tunable Rashba spin-orbit interactions, realized in semiconductor quantum point contacts. We observe a transition from single to double peak zero-bias anomalies in nonequilibrium transport-the manifestation of the Kondo effect-indicating a controlled Kondo spin reversal using only spin-orbit interactions. Universal scaling of the Kondo conductance is demonstrated, implying that the spin-orbit interactions could enhance the Kondo temperature. A theoretical model based on quantum master equations is also developed to calculate the nonequilibrium quantum transport.

3.
Phys Rev Lett ; 121(13): 137703, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312059

RESUMO

Using a recent time-of-flight measurement technique with 1 ps time resolution and electron-energy spectroscopy, we develop a method to measure the longitudinal-optical-phonon emission rate of hot electrons traveling along a depleted edge of a quantum Hall bar. Comparison to a single-particle model implies the scattering mechanism involves a two-step process via an intra-Landau-level transition. We show that this can be suppressed by control of the edge potential profile, and a scattering length >1 mm can be achieved, allowing the use of this system for scalable single-electron device applications.

4.
Nat Commun ; 8: 15997, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28691707

RESUMO

The spatial separation of electron spins followed by the control of their individual spin dynamics has recently emerged as an essential ingredient in many proposals for spin-based technologies because it would enable both of the two spin species to be simultaneously utilized, distinct from most of the current spintronic studies and technologies wherein only one spin species could be handled at a time. Here we demonstrate that the spatial spin splitting of a coherent beam of electrons can be achieved and controlled using the interplay between an external magnetic field and Rashba spin-orbit interaction in semiconductor nanostructures. The technique of transverse magnetic focusing is used to detect this spin separation. More notably, our ability to engineer the spin-orbit interactions enables us to simultaneously manipulate and probe the coherent spin dynamics of both spin species and hence their correlation, which could open a route towards spintronics and spin-based quantum information processing.

5.
Nat Commun ; 7: 12784, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27627993

RESUMO

One-dimensional electronic fluids are peculiar conducting systems, where the fundamental role of interactions leads to exotic, emergent phenomena, such as spin-charge (spinon-holon) separation. The distinct low-energy properties of these 1D metals are successfully described within the theory of linear Luttinger liquids, but the challenging task of describing their high-energy nonlinear properties has long remained elusive. Recently, novel theoretical approaches accounting for nonlinearity have been developed, yet the rich phenomenology that they predict remains barely explored experimentally. Here, we probe the nonlinear spectral characteristics of short GaAs quantum wires by tunnelling spectroscopy, using an advanced device consisting of 6000 wires. We find evidence for the existence of an inverted (spinon) shadow band in the main region of the particle sector, one of the central predictions of the new nonlinear theories. A (holon) band with reduced effective mass is clearly visible in the particle sector at high energies.

6.
Phys Rev Lett ; 116(12): 126803, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27058091

RESUMO

We report time-of-flight measurements on electrons traveling in quantum Hall edge states. Hot-electron wave packets are emitted one per cycle into edge states formed along a depleted sample boundary. The electron arrival time is detected by driving a detector barrier with a square wave that acts as a shutter. By adding an extra path using a deflection barrier, we measure a delay in the arrival time, from which the edge-state velocity v is deduced. We find that v follows 1/B dependence, in good agreement with the E[over →]×B[over →] drift. The edge potential is estimated from the energy dependence of v using a harmonic approximation.

7.
Phys Rev Lett ; 114(19): 196401, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26024184

RESUMO

Studying interacting fermions in one dimension at high energy, we find a hierarchy in the spectral weights of the excitations theoretically, and we observe evidence for second-level excitations experimentally. Diagonalizing a model of fermions (without spin), we show that levels of the hierarchy are separated by powers of R^{2}/L^{2}, where R is a length scale related to interactions and L is the system length. The first-level (strongest) excitations form a mode with parabolic dispersion, like that of a renormalized single particle. The second-level excitations produce a singular power-law line shape to the first-level mode and multiple power laws at the spectral edge. We measure momentum-resolved tunneling of electrons (fermions with spin) from or to a wire formed within a GaAs heterostructure, which shows parabolic dispersion of the first-level mode and well-resolved spin-charge separation at low energy with appreciable interaction strength. We find structure resembling the second-level excitations, which dies away quite rapidly at high momentum.

8.
Nat Nanotechnol ; 10(1): 35-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25531088

RESUMO

The spin field-effect transistor envisioned by Datta and Das opens a gateway to spin information processing. Although the coherent manipulation of electron spins in semiconductors is now possible, the realization of a functional spin field-effect transistor for information processing has yet to be achieved, owing to several fundamental challenges such as the low spin-injection efficiency due to resistance mismatch, spin relaxation and the spread of spin precession angles. Alternative spin transistor designs have therefore been proposed, but these differ from the field-effect transistor concept and require the use of optical or magnetic elements, which pose difficulties for incorporation into integrated circuits. Here, we present an all-electric and all-semiconductor spin field-effect transistor in which these obstacles are overcome by using two quantum point contacts as spin injectors and detectors. Distinct engineering architectures of spin-orbit coupling are exploited for the quantum point contacts and the central semiconductor channel to achieve complete control of the electron spins (spin injection, manipulation and detection) in a purely electrical manner. Such a device is compatible with large-scale integration and holds promise for future spintronic devices for information processing.

9.
Phys Rev Lett ; 111(21): 216807, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24313516

RESUMO

We demonstrate the energy- and time-resolved detection of single-electron wave packets from a clock-controlled source transmitted through a high-energy quantum Hall edge channel. A quantum dot source is loaded with single electrons which are then emitted ~150 meV above the Fermi energy. The energy spectroscopy of emitted electrons indicates that at high magnetic field these electrons can be transported over several microns without inelastic electron-electron or electron-phonon scattering. Using a time-resolved spectroscopic technique, we deduce the wave packet size at picosecond resolution. We also show how this technique can be used to switch individual electrons into different electron waveguides (edge channels).

10.
Nat Nanotechnol ; 8(6): 417-20, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23666448

RESUMO

Single-electron pumps are set to revolutionize electrical metrology by enabling the ampere to be redefined in terms of the elementary charge of an electron. Pumps based on lithographically fixed tunnel barriers in mesoscopic metallic systems and normal/superconducting hybrid turnstiles can reach very small error rates, but only at megahertz pumping speeds that correspond to small currents of the order of picoamperes. Tunable barrier pumps in semiconductor structures are operated at gigahertz frequencies, but the theoretical treatment of the error rate is more complex and only approximate predictions are available. Here, we present a monolithic, fixed-barrier single-electron pump made entirely from graphene that performs at frequencies up to several gigahertz. Combined with the record-high accuracy of the quantum Hall effect and proximity-induced Josephson junctions, quantized-current generation brings an all-graphene closure of the quantum metrological triangle within reach. Envisaged applications for graphene charge pumps outside quantum metrology include single-photon generation via electron-hole recombination in electrostatically doped bilayer graphene reservoirs, single Dirac fermion emission in relativistic electron quantum optics and read-out of spin-based graphene qubits in quantum information processing.


Assuntos
Transporte de Elétrons , Grafite/química , Pontos Quânticos , Semicondutores , Elétrons , Humanos , Fótons
11.
Phys Rev Lett ; 109(17): 177202, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23215217

RESUMO

All-electrical control of spin transport in nanostructures has been the central interest and challenge of spin physics and spintronics. Here we demonstrate on-chip spin polarizing or filtering actions by driving the gate-defined one dimensional (1D) conductor, one of the simplest geometries for integrated quantum devices, away from the conventional Ohmic regime. Direct measurement of the spin polarization of the emitted current was performed when the momentum degeneracy was lifted, wherein both the 1D polarizer for spin injection and the analyzer for spin detection were demonstrated. The results showed that a configuration of gates and applied voltages can give rise to a tunable spin polarization, which has implications for the development of spintronic devices and future quantum information processing.

12.
Nano Lett ; 12(11): 5448-54, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23078572

RESUMO

Investigating the structure of quantized plateaus in the Hall conductance of graphene is a powerful way of probing its crystalline and electronic structure and will also help to establish whether graphene can be used as a robust standard of resistance for quantum metrology. We use low-temperature scanning gate microscopy to image the interplateau breakdown of the quantum Hall effect in an exfoliated bilayer graphene flake. Scanning gate images captured during breakdown exhibit intricate patterns where the conductance is strongly affected by the presence of the scanning probe tip. The maximum density and intensity of the tip-induced conductance perturbations occur at half-integer filling factors, midway between consecutive quantum Hall plateau, while the intensity of individual sites shows a strong dependence on tip-voltage. Our results are well-described by a model based on quantum percolation which relates the points of high responsivity to tip-induced scattering in a network of saddle points separating localized states.

13.
Nat Commun ; 3: 930, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22760629

RESUMO

Electron pumps generate a macroscopic electric current by controlled manipulation of single electrons. Despite intensive research towards a quantum current standard over the last 25 years, making a fast and accurate quantized electron pump has proved extremely difficult. Here we demonstrate that the accuracy of a semiconductor quantum dot pump can be dramatically improved by using specially designed gate drive waveforms. Our pump can generate a current of up to 150 pA, corresponding to almost a billion electrons per second, with an experimentally demonstrated current accuracy better than 1.2 parts per million (p.p.m.) and strong evidence, based on fitting data to a model, that the true accuracy is approaching 0.01 p.p.m. This type of pump is a promising candidate for further development as a realization of the SI base unit ampere, following a redefinition of the ampere in terms of a fixed value of the elementary charge.

14.
Phys Rev Lett ; 107(12): 126801, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-22026783

RESUMO

We report measurements of the compressibility of a one-dimensional quantum wire, defined in the upper well of a GaAs/AlGaAs double quantum well heterostructure. A wire defined simultaneously in the lower well probes the ability of the upper wire to screen the electric field from a biased surface gate. The technique is sensitive enough to resolve spin splitting of the subbands in the presence of an in-plane magnetic field. We measure a compressibility signal due to the 0.7 structure and study its evolution with increasing temperature and magnetic field. We see no evidence of the formation of the quasibound state predicted by the Kondo model, instead our data are consistent with theories which predict that the 0.7 structure arises as a result of spontaneous spin polarization.

15.
Nature ; 477(7365): 439-42, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21938065

RESUMO

Single-electron circuits of the future, consisting of a network of quantum dots, will require a mechanism to transport electrons from one functional part of the circuit to another. For example, in a quantum computer decoherence and circuit complexity can be reduced by separating quantum bit (qubit) manipulation from measurement and by providing a means of transporting electrons between the corresponding parts of the circuit. Highly controlled tunnelling between neighbouring dots has been demonstrated, and our ability to manipulate electrons in single- and double-dot systems is improving rapidly. For distances greater than a few hundred nanometres, neither free propagation nor tunnelling is viable while maintaining confinement of single electrons. Here we show how a single electron may be captured in a surface acoustic wave minimum and transferred from one quantum dot to a second, unoccupied, dot along a long, empty channel. The transfer direction may be reversed and the same electron moved back and forth more than sixty times-a cumulative distance of 0.25 mm-without error. Such on-chip transfer extends communication between quantum dots to a range that may allow the integration of discrete quantum information processing components and devices.

16.
Phys Rev Lett ; 106(20): 206801, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21668251

RESUMO

We make use of spin selection rules to investigate the electron spin system of a carbon nanotube double quantum dot. Measurements of the electron transport as a function of the magnetic field and energy detuning between the quantum dots reveal an intricate pattern of the spin state evolution. We demonstrate that the complete set of measurements can be understood by taking into account the interplay between spin-orbit interaction and a single impurity spin coupled to the double dot. The detection and tunability of this coupling are important for quantum manipulation in carbon nanotubes.

17.
Phys Rev Lett ; 106(12): 126801, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21517337

RESUMO

We report the observation of nonadiabatic excitations of single electrons in a quantum dot. Using a tunable-barrier single-electron pump, we have developed a way of reading out the excitation spectrum and level population of the dot by using the pump current as a probe. When the potential well is deformed at subnanosecond time scales, electrons are excited to higher levels. In the presence of a perpendicular magnetic field, the excited states follow a Fock-Darwin spectrum. Our experiments provide a simple model system to study nonadiabatic processes of quantum particles.

18.
Nano Lett ; 10(8): 2789-93, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20698590

RESUMO

State readout is a key requirement for a quantum computer. For semiconductor-based qubit devices it is usually accomplished using a separate mesoscopic electrometer. Here we demonstrate a simple detection scheme in which a radio frequency resonant circuit coupled to a semiconductor double quantum dot is used to probe its charge and spin states. These results demonstrate a new noninvasive technique for measuring charge and spin states in quantum dot systems without requiring a separate mesoscopic detector.

19.
Nano Lett ; 10(7): 2330-4, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20560608

RESUMO

Observation of the interplay between interacting energy levels of two spin species is limited by the difficulties in continuously tracking energy levels and thus leaves spin transport in quantum wires still not well understood. We present a dc conductance feature in the nonequilibrium transport regime, a direct indication that the first one-dimensional subband is filled mostly by one spin species only. How this anomalous spin population changes with magnetic field and source-drain bias is directly measured. We show the source-drain bias changes spin polarization in semiconductor nanowires, providing a fully electrical method for the creation and manipulation of spin polarization as well as spin-polarized currents.

20.
Phys Rev Lett ; 103(1): 016805, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19659168

RESUMO

We have studied interactions between two capacitively coupled GaAs/AlGaAs few-electron double quantum dots. Each double quantum dot defines a tunable two-level system, or qubit, in which a single excess electron occupies the ground state of either one dot or the other. Applying microwave radiation, we resonantly drive transitions between states and noninvasively measure occupancy changes using proximal quantum point contact charge detectors. The level structure of the interacting two-qubit system is probed by driving it at a fixed microwave frequency while varying the energy detuning of both double dots. We observe additional resonant transitions consistent with a simple coupled two-qubit Hamiltonian model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA