Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 17(4): 2506-2511, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28287748

RESUMO

Colossal magnetoresistance (CMR) is demonstrated at terahertz (THz) frequencies by using terahertz time-domain magnetospectroscopy to examine vertically aligned nanocomposites (VANs) and planar thin films of La0.7Sr0.3MnO3. At the Curie temperature (room temperature), the THz conductivity of the VAN was dramatically enhanced by over 2 orders of magnitude under the application of a magnetic field with a non-Drude THz conductivity that increased with frequency. The direct current (dc) CMR of the VAN is controlled by extrinsic magnetotransport mechanisms such as spin-polarized tunneling between nanograins. In contrast, we find that THz CMR is dominated by intrinsic, intragrain transport: the mean free path was smaller than the nanocolumn size, and the planar thin-film exhibited similar THz CMR to the VAN. Surprisingly, the observed colossal THz magnetoresistance suggests that the magnetoresistance can be large for alternating current motion on nanometer length scales, even when the magnetoresistance is negligible on the macroscopic length scales probed by dc transport. This suggests that colossal magnetoresistance at THz frequencies may find use in nanoelectronics and in THz optical components controlled by magnetic fields. The VAN can be scaled in thickness while retaining a high structural quality and offers a larger THz CMR at room temperature than the planar film.

2.
Opt Lett ; 39(5): 1121-4, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24690686

RESUMO

Polarization-resolved terahertz (THz) time-domain spectroscopy was utilized to examine the complex refractive index of lanthanum aluminate (LaAlO3), a rhombohedrally distorted perovskite that exhibits crystallographic twin domains. The uniaxial anisotropy of the refractive index was quantified. The ellipticity of THz radiation pulses after transmission through single domains indicated that LaAlO3 can be used as a quarter- or half-wave plate. The effective anisotropy of [001]-oriented LaAlO3 was found to be reduced when the material exhibited multiple, narrow twin domains.

3.
Nat Commun ; 5: 3787, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24777198

RESUMO

Magnetically induced ferroelectric multiferroics present an exciting new paradigm in the design of multifunctional materials, by intimately coupling magnetic and polar order. Magnetoelectricity creates a novel quasiparticle excitation--the electromagnon--at terahertz frequencies, with spectral signatures that unveil important spin interactions. To date, electromagnons have been discovered at low temperature (<70 K) and predominantly in rare-earth compounds such as RMnO3. Here we demonstrate using terahertz time-domain spectroscopy that intersublattice exchange in the improper multiferroic cupric oxide (CuO) creates electromagnons at substantially elevated temperatures (213-230 K). Dynamic magnetoelectric coupling can therefore be achieved in materials, such as CuO, that exhibit minimal static cross-coupling. The electromagnon strength and energy track the static polarization, highlighting the importance of the underlying cycloidal spin structure. Polarized neutron scattering and terahertz spectroscopy identify a magnon in the antiferromagnetic ground state, with a temperature dependence that suggests a significant role for biquadratic exchange.


Assuntos
Cobre/química , Compostos de Ferro/química , Magnetismo/instrumentação , Magnetismo/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA