Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Breast Cancer ; 10(1): 37, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802426

RESUMO

Triple negative breast cancer (TNBC) accounts for 15-20% of breast cancer cases in the United States. Systemic neoadjuvant chemotherapy (NACT), with or without immunotherapy, is the current standard of care for patients with early-stage TNBC. However, up to 70% of TNBC patients have significant residual disease once NACT is completed, which is associated with a high risk of developing recurrence within two to three years of surgical resection. To identify targetable vulnerabilities in chemoresistant TNBC, we generated longitudinal patient-derived xenograft (PDX) models from TNBC tumors before and after patients received NACT. We then compiled transcriptomes and drug response profiles for all models. Transcriptomic analysis identified the enrichment of aberrant protein homeostasis pathways in models from post-NACT tumors relative to pre-NACT tumors. This observation correlated with increased sensitivity in vitro to inhibitors targeting the proteasome, heat shock proteins, and neddylation pathways. Pevonedistat, a drug annotated as a NEDD8-activating enzyme (NAE) inhibitor, was prioritized for validation in vivo and demonstrated efficacy as a single agent in multiple PDX models of TNBC. Pharmacotranscriptomic analysis identified a pathway-level correlation between pevonedistat activity and post-translational modification (PTM) machinery, particularly involving neddylation and sumoylation targets. Elevated levels of both NEDD8 and SUMO1 were observed in models exhibiting a favorable response to pevonedistat compared to those with a less favorable response in vivo. Moreover, a correlation emerged between the expression of neddylation-regulated pathways and tumor response to pevonedistat, indicating that targeting these PTM pathways may prove effective in combating chemoresistant TNBC.

2.
Pharmacol Ther ; 248: 108468, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290575

RESUMO

Cannabis, cocaine, 3,4-methylenedioxymethamphetamine, and lysergic acid diethylamide are psychoactive substances with a significant increase in consumption during the 21st century due to their popularity in medicinal and recreational use. New psychoactive substances (NPSs) mimic established psychoactive substances. NPSs are known as being natural and safe to consumers; however, they are neither natural nor safe, causing severe adverse reactions, including seizures, nephrotoxicity, and sometimes death. Synthetic cannabinoids, synthetic cathinones, phenethylamines, and piperazines are all examples of NPSs. As of January 2020, nearly 1000 NPSs have become documented. Due to their low cost, ease of availability, and difficulty of detection, misuse of NPSs has become a familiar and growing problem, especially in adolescents and young adults in the past decade. The use of NPSs is associated with higher risks of unplanned sexual intercourse and pregnancy. As many as 4 in 100 women seeking treatment for substance abuse are pregnant or nursing. Animal studies and human clinical case reports have shown that exposure to certain NPSs during lactation periods has toxic effects on neonates, increasing various risks, including brain damage. Nevertheless, neonatal toxicity effects of NPSs are usually unrecognized and overlooked by healthcare professionals. In this review article, we introduce and discuss the potential neonatal toxicity of NPSs, emphasizing synthetic cannabinoids. Utilizing the established prediction models, we identify synthetic cannabinoids and their highly accumulative metabolites in breast milk.


Assuntos
Psicotrópicos , Humanos , Psicotrópicos/toxicidade , Gravidez , Recém-Nascido , Canabinoides/toxicidade , Fenetilaminas/toxicidade , Transtornos Relacionados ao Uso de Substâncias/epidemiologia
3.
Elife ; 122023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36705565

RESUMO

Naturally occurring body movements and collective neural activity both exhibit complex dynamics, often with scale-free, fractal spatiotemporal structure. Scale-free dynamics of both brain and behavior are important because each is associated with functional benefits to the organism. Despite their similarities, scale-free brain activity and scale-free behavior have been studied separately, without a unified explanation. Here, we show that scale-free dynamics of mouse behavior and neurons in the visual cortex are strongly related. Surprisingly, the scale-free neural activity is limited to specific subsets of neurons, and these scale-free subsets exhibit stochastic winner-take-all competition with other neural subsets. This observation is inconsistent with prevailing theories of scale-free dynamics in neural systems, which stem from the criticality hypothesis. We develop a computational model which incorporates known cell-type-specific circuit structure, explaining our findings with a new type of critical dynamics. Our results establish neural underpinnings of scale-free behavior and clear behavioral relevance of scale-free neural activity.


As we go about our days, how often do we fidget, compared to how frequently we make larger movements, like walking down the hall? And how rare is a trek across town compared to that same walk down the hall? Animals tend to follow a mathematical law that relates the size of our movements to how often we do them. This law posits that small-to-medium movements and large-to-huge movements are related in the same way, that is, the law is 'scale-free', it holds the same for different scales of movement. Surprisingly, measurements of brain activity also follow this scale-free law: the level of activation of a group of neurons relates to how often they are activated in the same way for different levels of activation. Although body movements and brain activity behave in a mathematically similar way, these two facts had not previously been linked. Jones et al. studied body movements and brain activity in mice, and found that scale-free body movements were linked to scale-free brain activity, but only in certain subsets of neurons. This observation had been hidden because other subsets of neurons compete with scale-free neurons. When the scale-free neurons turn on, the competing groups turn off. When averaged together, these fluctuations cancel out. The findings of Jones et al. provide a new understanding of how brain and body dynamics are orchestrated in healthy organisms. In particular, their results suggest that the complex, multi-scale nature of behavior and body movements may emerge from brain activity operating at a critical tipping point between order and disorder, at the edge of chaos.


Assuntos
Encéfalo , Córtex Visual , Animais , Camundongos , Encéfalo/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Fractais
5.
Obesity (Silver Spring) ; 29(12): 2081-2088, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34724360

RESUMO

OBJECTIVE: This study investigated whether brain regions involved in the regulation of food intake respond differently to glucose ingestion in children and adults and the relationship between brain responses and weight status. METHODS: Data included 87 children (ages 7-11 years) and 94 adults (ages 18-35 years) from two cohorts. Healthy weight, overweight, and obesity were defined by Centers for Disease Control and Prevention criteria. Brain responses to glucose were determined by measuring cerebral blood flow using arterial spin labeling magnetic resonance imaging in brain regions involved in the regulation of eating behavior. RESULTS: Children showed significantly larger increases in brain responses to glucose than adults in the dorsal striatum (p < 0.01), insula (p < 0.01), hippocampus (p < 0.01), and dorsal-lateral prefrontal cortex (p < 0.01). Responses to glucose in the dorsal striatum (odds ratio [OR] = 1.52, 95% CI 1.05-2.20; p = 0.03), hippocampus (OR = 1.51, 95% CI: 1.02-2.22; p = 0.04), insula (OR = 1.64, 95% CI: 1.11-2.42; p = 0.01), and orbitofrontal cortex (OR = 1.63 95% CI: 1.12-2.39; p = 0.01) were positively associated with overweight or obesity, independent of age group. CONCLUSIONS: Children have greater brain responses to glucose ingestion than adults in regions involved in eating behavior, and these responses are associated with weight status.


Assuntos
Glucose , Sobrepeso , Adolescente , Adulto , Encéfalo , Criança , Ingestão de Alimentos , Humanos , Imageamento por Ressonância Magnética/métodos , Obesidade , Adulto Jovem
6.
Cell Rep ; 37(8): 110044, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818540

RESUMO

ß-hydroxybutyrate (ß-OHB) is an essential metabolic energy source during fasting and functions as a chromatin regulator by lysine ß-hydroxybutyrylation (Kbhb) modification of the core histones H3 and H4. We report that Kbhb on histone H3 (H3K9bhb) is enriched at proximal promoters of critical gene subsets associated with lipolytic and ketogenic metabolic pathways in small intestine (SI) crypts during fasting. Similar Kbhb enrichment is observed in Lgr5+ stem cell-enriched epithelial spheroids treated with ß-OHB in vitro. Combinatorial chromatin state analysis reveals that H3K9bhb is associated with active chromatin states and that fasting enriches for an H3K9bhb-H3K27ac signature at active metabolic gene promoters and distal enhancer elements. Intestinal knockout of Hmgcs2 results in marked loss of H3K9bhb-associated loci, suggesting that local production of ß-OHB is responsible for chromatin reprogramming within the SI crypt. We conclude that modulation of H3K9bhb in SI crypts is a key gene regulatory event in response to fasting.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Jejum/metabolismo , Histonas/metabolismo , Acetilação , Animais , Cromatina/metabolismo , Jejum/fisiologia , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Intestino Delgado/metabolismo , Corpos Cetônicos/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética
7.
Nat Commun ; 12(1): 5024, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408137

RESUMO

There is an unmet clinical need for stratification of breast lesions as indolent or aggressive to tailor treatment. Here, single-cell transcriptomics and multiparametric imaging applied to a mouse model of breast cancer reveals that the aggressive tumor niche is characterized by an expanded basal-like population, specialization of tumor subpopulations, and mixed-lineage tumor cells potentially serving as a transition state between luminal and basal phenotypes. Despite vast tumor cell-intrinsic differences, aggressive and indolent tumor cells are functionally indistinguishable once isolated from their local niche, suggesting a role for non-tumor collaborators in determining aggressiveness. Aggressive lesions harbor fewer total but more suppressed-like T cells, and elevated tumor-promoting neutrophils and IL-17 signaling, disruption of which increase tumor latency and reduce the number of aggressive lesions. Our study provides insight into tumor-immune features distinguishing indolent from aggressive lesions, identifies heterogeneous populations comprising these lesions, and supports a role for IL-17 signaling in aggressive progression.


Assuntos
Neoplasias da Mama/imunologia , Mama/patologia , Evasão Tumoral , Animais , Mama/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Progressão da Doença , Feminino , Humanos , Interleucina-17/genética , Interleucina-17/imunologia , Camundongos , Neutrófilos/imunologia , Análise de Célula Única
8.
Front Endocrinol (Lausanne) ; 12: 638504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868172

RESUMO

It has been hypothesized that the incretin hormone, glucagon-like peptide-1 (GLP-1), decreases overeating by influencing mesolimbic brain regions that process food-cues, including the dorsal striatum. We previously showed that habitual added sugar intake was associated with lower glucose-induced circulating GLP-1 and a greater striatal response to high calorie food cues in lean individuals. Less is known about how dietary added sugar and obesity may interact to affect postprandial GLP-1 and its relationship to striatal responses to food cues and feeding behavior. The current study aimed to expand upon previous research by assessing how circulating GLP-1 and striatal food cue reactivity are affected by acute glucose consumption in participants with varied BMIs and amounts of habitual consumption of added sugar. This analysis included 72 participants from the Brain Response to Sugar Study who completed two study visits where they consumed either plain water or 75g glucose dissolved in water (order randomized; both drinks were flavored with non-caloric cherry flavoring) and underwent repeated blood sampling, a functional magnetic resonance imaging (fMRI) based food-cue task, and an ad-libitum buffet meal. Correlations between circulating GLP-1 levels, striatal food-cue reactivity, and food intake were assessed, and interactions between obesity and added sugar on GLP-1 and striatal responses were examined. An interaction between BMI and dietary added sugar was associated with reduced post-glucose GLP-1 secretion. Participants who were obese and consumed high levels of added sugar had the smallest increase in plasma GLP-1 levels. Glucose-induced GLP-1 secretion was correlated with lower dorsal striatal reactivity to high-calorie versus low-calorie food-cues, driven by an increase in reactivity to low calorie food-cues. The increase in dorsal striatal reactivity to low calorie food-cues was negatively correlated with sugar consumed at the buffet. These findings suggest that an interaction between obesity and dietary added sugar intake is associated with additive reductions in postprandial GLP-1 secretion. Additionally, the results suggest that changes to dorsal striatal food cue reactivity through a combination of dietary added sugar and obesity may affect food consumption.


Assuntos
Corpo Estriado/metabolismo , Ingestão de Energia , Comportamento Alimentar , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Adulto , Animais , Apetite , Comportamento Animal , Glicemia/metabolismo , Índice de Massa Corporal , Sinais (Psicologia) , Feminino , Polipeptídeo Inibidor Gástrico , Glucose/química , Glucose/metabolismo , Humanos , Insulina/sangue , Imageamento por Ressonância Magnética , Masculino , Refeições , Obesidade , Período Pós-Prandial , Adulto Jovem
9.
Obesity (Silver Spring) ; 29(2): 370-378, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33491312

RESUMO

OBJECTIVE: The current analysis used functional magnetic resonance imaging (fMRI) to explore a model of energy regulation postulating that the hippocampus integrates interoceptive signals and environmental stimuli to suppress responding to food cues. It was hypothesized that hippocampal activity would increase in response to food cues under postnutritive relative to fasted conditions, given the role of the hippocampus in integrating postnutritive signals with food cues, and that obesity, added sugar intake, or a combination of these factors would alter this response. METHODS: Data were analyzed on 65 participants (29 males). Participants consumed drinks containing 75 g of glucose or water and underwent an fMRI-based food-cue task. Blood-oxygen-level-dependent (BOLD) fMRI was used to examine hippocampal responses to food and nonfood cues. RESULTS: In lean participants, the hippocampal BOLD signal was higher following glucose compared with water, but participants with obesity showed the opposite pattern. BMI interacted with added sugar intake such that BMI was more negatively correlated with hippocampal food-cue reactivity after glucose ingestion in individuals who consumed high levels of added sugar. Hippocampal BOLD was negatively correlated with prospective food intake. CONCLUSIONS: The findings are consistent with the view that energy regulation involves hippocampal processes in humans and that added sugar and excess weight may impair this function.


Assuntos
Peso Corporal/fisiologia , Sinais (Psicologia) , Açúcares da Dieta/metabolismo , Comportamento Alimentar/fisiologia , Hipocampo , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Obesidade/metabolismo
10.
Bone ; 145: 115040, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31437568

RESUMO

Hip fractures at the femoral neck are a major cause of morbidity and mortality, but aside from biomechanical strength testing, little is known about femoral neck architecture in mice. Procedures were optimized to analyze high-resolution (6 µm voxel size) microCT scans of the mouse femoral neck to provide bone mass and architectural information. Similar to histomorphometric observations in rats, the boundary between cortical and trabecular bone is difficult to identify in the mouse femoral mid-neck and these compartments were not analyzed separately. Analyses included total area, mineralized bone area, and bone volume fraction (BV/TV). Femoral neck architecture varies in C57BL/6J, 129/SvEv and BALB/c mouse strains. Bone cross sectional area and BV/TV were low in Lrp5 but elevated in Sost gene knockout mice. Sfrp4 gene knockout resulted in high total area, normal bone area, low BV/TV and, as indicated by BS/BV values, greater trabecularization. Femoral neck BV/TV declined with age and ovariectomy, but increased with teriparatide treatment. These findings demonstrate that the architecture of the mouse femoral neck mimics phenotypes and treatment effects observed at other skeletal sites and is a relevant bone site for translational studies examining osteoporosis therapies.


Assuntos
Densidade Óssea , Colo do Fêmur , Animais , Feminino , Colo do Fêmur/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas , Ratos , Microtomografia por Raio-X
11.
J Clin Endocrinol Metab ; 106(3): 654-664, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33300990

RESUMO

CONTEXT: Fructose compared to glucose has adverse effects on metabolic function, but endocrine responses to oral sucrose vs glucose is not well understood. OBJECTIVE: We investigated how oral sucrose vs glucose affected appetite-regulating hormones, and how biological factors (body mass index [BMI], insulin sensitivity, sex) influence endocrine responses to these 2 types of sugar. DESIGN: Sixty-nine adults (29 men; 23.22 ±â€…3.74 years; BMI 27.03 ±â€…4.96 kg/m2) completed the study. On 2 occasions, participants consumed 300-mL drinks containing 75 g of glucose or sucrose. Blood was sampled at baseline, 10, 35, and 120 minutes post drink for plasma glucose, insulin, glucagon-like peptide (GLP-1)(7-36), peptide YY (PYY)total, and acyl-ghrelin measures. Hormone levels were compared between conditions using a linear mixed model. Interaction models were performed, and results were stratified to assess how biological factors influence endocrine responses. RESULTS: Sucrose vs glucose ingestion provoked a less robust rise in glucose (P < .001), insulin (P < .001), GLP-1 (P < .001), and PYY (P = .02), whereas acyl-ghrelin suppression was similar between the sugars. We found BMI status by sugar interactions for glucose (P = .01) and PYY (P = .03); obese individuals had smaller increases in glucose and PYY levels after consuming sucrose vs glucose. There were interactions between insulin sensitivity and sugar for glucose (P = .003) and insulin (P = .04), and a sex by sugar interaction for GLP-1 (P = .01); men demonstrated smaller increases in GLP-1 in response to oral sucrose vs glucose. CONCLUSION: Sucrose is less efficient at signaling postprandial satiation than glucose, and biological factors influence differential hormone responses to sucrose vs glucose consumption.


Assuntos
Regulação do Apetite/efeitos dos fármacos , Glucose/farmacologia , Sacarose/farmacologia , Administração Oral , Adolescente , Adulto , Apetite/efeitos dos fármacos , Apetite/fisiologia , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Índice de Massa Corporal , Regulação para Baixo/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Feminino , Grelina/análogos & derivados , Grelina/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Glucose/administração & dosagem , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina/fisiologia , Masculino , Obesidade/sangue , Peptídeo YY/sangue , Saciação/efeitos dos fármacos , Saciação/fisiologia , Caracteres Sexuais , South Carolina , Sacarose/administração & dosagem , Adulto Jovem
12.
Nutrients ; 12(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120899

RESUMO

It is not known how acute sucralose and glucose alter signaling within the brain when individuals make decisions about available food. Here we examine this using Food Bid Task in which participants bid on visually depicted food items, while simultaneously undergoing functional Magnetic Resonance Imaging. Twenty-eight participants completed three sessions after overnight fast, distinguished only by the consumption at the start of the session of 300 mL cherry flavored water with either 75 g glucose, 0.24 g sucralose, or no other ingredient. There was a marginally significant (p = 0.05) effect of condition on bids, with 13.0% lower bids after glucose and 16.6% lower bids after sucralose (both relative to water). Across conditions, greater activity within regions a priori linked to food cue reactivity predicted higher bids, as did greater activity within the medial orbitofrontal cortex and bilateral frontal pole. There was a significant attenuation within the a priori region of interest (ROI) after sucralose compared to water (p < 0.05). Activity after glucose did not differ significantly from either of the other conditions in the ROI, but an attenuation in signal was observed in the parietal cortex, relative to the water condition. Taken together, these data suggest attenuation of central nervous system (CNS) signaling associated with food valuation after glucose and sucralose.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Comportamento de Escolha/efeitos dos fármacos , Alimentos , Glucose/farmacologia , Sacarose/análogos & derivados , Adulto , Regulação do Apetite/efeitos dos fármacos , Regulação do Apetite/fisiologia , Comportamento de Escolha/fisiologia , Jejum , Feminino , Preferências Alimentares , Humanos , Fome/fisiologia , Imageamento por Ressonância Magnética , Masculino , Sacarose/farmacologia
13.
Nutr Res ; 79: 1-12, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32544728

RESUMO

Traditional theories of neuroeconomics focus on reinforcement learning and reward value. We propose here a novel reframing of reinforcement learning and motivation that includes a hippocampal-dependent regulatory mechanism which balances cue-induced behavioral excitation with behavioral inhibition. This mechanism enables interoceptive cues produced by respective food or drug satiety to antagonize the ability of excitatory food- and drug-related environmental cues to retrieve the memories of food and drug reinforcers, thereby suppressing the power of those cues to evoke appetitive behavior. When the operation of this mechanism is impaired, ability of satiety signals to inhibit appetitive behavior is weakened because the relative balance between inhibition and simple excitation is shifted toward increased retrieval of food and drug memories by environmental cues. In the present paper, we (1) describe the associative processes that constitute this mechanism of hippocampal-dependent behavior inhibition; (2) describe how a prevailing obesity-promoting diet and drugs of abuse produce hippocampal pathophysiologies that can selectively impair this inhibitory function; and (3) propose how glucagon-like peptide 1 (GLP-1), an incretin hormone that is recognized as an important satiety signal, may work to protect the hippocampal-dependent inhibition. Our perspective may add to neuroscientific and neuroeconomic analyses of both overeating and drug abuse by outlining the role of hippocampal-dependent memory processes in the control of both food and drug seeking behaviors. In addition, this view suggests that consideration should be given to diet- and drug induced hippocampal pathophysiologies, as potential novel targets for the treatment of dysregulated energy and drug intake.


Assuntos
Apetite , Comportamento Alimentar , Hipocampo/fisiologia , Inibição Psicológica , Reforço Psicológico , Recompensa , Animais , Peso Corporal , Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/fisiopatologia , Sinais (Psicologia) , Dieta Ocidental , Ingestão de Alimentos , Feminino , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Humanos , Interocepção , Liraglutida/farmacologia , Masculino , Memória/efeitos dos fármacos , Motivação , Obesidade/tratamento farmacológico , Obesidade/fisiopatologia , Saciação , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia
14.
Nutrients ; 12(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224933

RESUMO

In rodent literature, there is evidence that excessive fructose consumption during development has a detrimental impact on hippocampal structure and function. In this study of 103 children ages 7-11 years old, we investigated whether dietary fructose intake was related to alterations in hippocampal volume and connectivity in humans. To examine if these associations were specific to fructose or were related to dietary sugars intake in general, we explored relationships between dietary intake of added sugars and the monosaccharide, glucose, on the same brain measures. We found that increased dietary intake of fructose, measured as a percentage of total calories, was associated with both an increase in the volume of the CA2/3 subfield of the right hippocampus and increased axial, radial, and mean diffusivity in the prefrontal connections of the right cingulum. These findings are consistent with the idea that increased fructose consumption during childhood may be associated with an inflammatory process, and/or decreases or delays in myelination and/or pruning. Increased habitual consumption of glucose or added sugar in general were associated with an increased volume of right CA2/3, but not with any changes in the connectivity of the hippocampus. These findings support animal data suggesting that higher dietary intake of added sugars, particularly fructose, are associated with alterations in hippocampal structure and connectivity during childhood.


Assuntos
Dieta/estatística & dados numéricos , Açúcares da Dieta/análise , Frutose/análise , Hipocampo , Criança , Inquéritos sobre Dietas , Feminino , Hipocampo/anatomia & histologia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino
15.
Pharmacol Res Perspect ; 8(1): e00561, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32003945

RESUMO

Synthetic cannabinoids (SCBs), designer drugs marketed as legal alternatives to marijuana, act as ligands to cannabinoid receptors; however, they have increased binding affinity and potency, resulting in toxicity symptoms such as cardiovascular incidents, seizures, and potentially death. N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) is a third generation SCB. When incubated with hepatocytes, it undergoes oxidation, hydrolysis, and glucuronidation, resulting in 29 metabolites, with monohydroxy STS-135 (M25) and dihydroxy STS-135 (M21) being the predominant metabolites. The enzymes responsible for this oxidative metabolism were unknown. Thus, the aim of this study was to identify the cytochrome P450 (P450s or CYPs) enzymes involved in the oxidative metabolism of STS-135. In this study, STS-135 was incubated with liver, intestinal, and brain microsomes and recombinant P450s to determine the enzymes involved in its metabolism. Metabolite quantification was carried out using ultra-performance liquid chromatography. STS-135 was extensively metabolized in HLMs and HIMs. Screening assays indicated CYP3A4 and CYP3A5 could be responsible for STS-135's oxidation. Through incubations with genotyped HLMs, CYP3A4 was identified as the primary oxidative enzyme. Interestingly, CYP2J2, a P450 isoform expressed in cardiovascular tissues, showed high activity towards the formation of M25 with a Km value of 11.4 µmol/L. Thus, it was concluded that STS-135 was primarily metabolized by CYP3A4 but may have extrahepatic metabolic pathways as well. Upon exposure to STS-135, individuals with low CYP3A4 activity could retain elevated blood concentration, resulting in toxicity. Additionally, CYP2J2 may aid in protecting against STS-135-induced cardiovascular toxicity.


Assuntos
Adamantano/análogos & derivados , Citocromo P-450 CYP3A/metabolismo , Indóis/farmacocinética , Microssomos/metabolismo , Adamantano/química , Adamantano/farmacocinética , Encéfalo/citologia , Cromatografia Líquida de Alta Pressão , Humanos , Indóis/química , Intestinos/citologia , Fígado/citologia , Oxirredução
16.
Clin Cancer Res ; 25(18): 5702-5716, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31391192

RESUMO

PURPOSE: Paclitaxel is an integral component of primary therapy for breast and epithelial ovarian cancers, but less than half of these cancers respond to the drug. Enhancing the response to primary therapy with paclitaxel could improve outcomes for women with both diseases.Experimental Design: Twelve kinases that regulate metabolism were depleted in multiple ovarian and breast cancer cell lines to determine whether they regulate sensitivity to paclitaxel in Sulforhodamine B assays. The effects of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2) depletion on cell metabolomics, extracellular acidification rate, nicotinamide adenine dinucleotide phosphate, reactive oxygen species (ROS), and apoptosis were studied in multiple ovarian and breast cancer cell lines. Four breast and ovarian human xenografts and a breast cancer patient-derived xenograft (PDX) were used to examine the knockdown effect of PFKFB2 on tumor cell growth in vivo. RESULTS: Knockdown of PFKFB2 inhibited clonogenic growth and enhanced paclitaxel sensitivity in ovarian and breast cancer cell lines with wild-type TP53 (wtTP53). Silencing PFKFB2 significantly inhibited tumor growth and enhanced paclitaxel sensitivity in four xenografts derived from two ovarian and two breast cancer cell lines, and prolonged survival in a triple-negative breast cancer PDX. Transfection of siPFKFB2 increased the glycolysis rate, but decreased the flow of intermediates through the pentose-phosphate pathway in cancer cells with wtTP53, decreasing NADPH. ROS accumulated after PFKFB2 knockdown, which stimulated Jun N-terminal kinase and p53 phosphorylation, and induced apoptosis that depended upon upregulation of p21 and Puma. CONCLUSIONS: PFKFB2 is a novel target whose inhibition can enhance the effect of paclitaxel-based primary chemotherapy upon ovarian and breast cancers retaining wtTP53.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Fosfofrutoquinase-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Expressão Gênica , Inativação Gênica , Humanos , Imuno-Histoquímica , Redes e Vias Metabólicas , Camundongos , Mutação , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Estresse Oxidativo , Fosfofrutoquinase-2/genética , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Int J Radiat Oncol Biol Phys ; 105(3): 537-547, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271824

RESUMO

PURPOSE: Chemotherapy combined with radiation therapy is the most commonly used approach for treating locally advanced pancreatic cancer. The use of curative doses of radiation in this disease setting is constrained because of the close proximity of the head of the pancreas to the duodenum. The purpose of this study was to determine whether fasting protects the duodenum from high-dose radiation, thereby enabling dose escalation for efficient killing of pancreatic tumor cells. METHODS AND MATERIALS: C57BL/6J mice were either fed or fasted for 24 hours and then exposed to total abdominal radiation at 11.5 Gy. Food intake, body weight, overall health, and survival were monitored. Small intestines were harvested at various time points after radiation, and villi length, crypt depth, and number of crypts per millimeter of intestine were determined. Immunohistochemistry was performed to assess apoptosis and double-strand DNA breaks, and microcolony assays were performed to determine intestinal stem cell regeneration capacity. A syngeneic KPC model of pancreatic cancer was used to determine the effects of fasting on the radiation responses of both pancreatic cancer and host intestinal tissues. RESULTS: We demonstrated that a 24-hour fast in mice improved intestinal stem cell regeneration, as revealed by microcolony assay, and improved host survival of lethal doses of total abdominal irradiation compared with fed controls. Fasting also improved survival of mice with orthotopic pancreatic tumors subjected to lethal abdominal radiation compared with controls with free access to food. Furthermore, fasting did not affect tumor cell killing by radiation therapy and enhanced γ-H2AX staining after radiation therapy, suggesting an additional mild radiosensitizing effect. CONCLUSIONS: These results establish proof of concept for fasting as a dose-escalation strategy, enabling ablative radiation in the treatment of unresectable pancreatic cancer.


Assuntos
Duodeno/efeitos da radiação , Jejum , Tratamentos com Preservação do Órgão , Neoplasias Pancreáticas/radioterapia , Tolerância a Radiação , Células-Tronco/efeitos da radiação , Abdome/efeitos da radiação , Animais , Apoptose , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Feminino , Histonas/metabolismo , Intestino Delgado/citologia , Intestino Delgado/efeitos da radiação , Masculino , Dose Máxima Tolerável , Camundongos , Camundongos Endogâmicos C57BL , Órgãos em Risco/efeitos da radiação , Neoplasias Pancreáticas/mortalidade , Estudo de Prova de Conceito , Lesões por Radiação/mortalidade , Lesões por Radiação/prevenção & controle , Dosagem Radioterapêutica , Distribuição Aleatória , Regeneração , Células-Tronco/fisiologia , Fatores de Tempo , Ensaio Tumoral de Célula-Tronco/métodos
18.
Sci Transl Med ; 11(488)2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996079

RESUMO

Eradicating triple-negative breast cancer (TNBC) resistant to neoadjuvant chemotherapy (NACT) is a critical unmet clinical need. In this study, patient-derived xenograft (PDX) models of treatment-naïve TNBC and serial biopsies from TNBC patients undergoing NACT were used to elucidate mechanisms of chemoresistance in the neoadjuvant setting. Barcode-mediated clonal tracking and genomic sequencing of PDX tumors revealed that residual tumors remaining after treatment with standard frontline chemotherapies, doxorubicin (Adriamycin) combined with cyclophosphamide (AC), maintained the subclonal architecture of untreated tumors, yet their transcriptomes, proteomes, and histologic features were distinct from those of untreated tumors. Once treatment was halted, residual tumors gave rise to AC-sensitive tumors with similar transcriptomes, proteomes, and histological features to those of untreated tumors. Together, these results demonstrated that tumors can adopt a reversible drug-tolerant state that does not involve clonal selection as an AC resistance mechanism. Serial biopsies obtained from patients with TNBC undergoing NACT revealed similar histologic changes and maintenance of stable subclonal architecture, demonstrating that AC-treated PDXs capture molecular features characteristic of human TNBC chemoresistance. Last, pharmacologic inhibition of oxidative phosphorylation using an inhibitor currently in phase 1 clinical development delayed residual tumor regrowth. Thus, AC resistance in treatment-naïve TNBC can be mediated by nonselective mechanisms that confer a reversible chemotherapy-tolerant state with targetable vulnerabilities.


Assuntos
Doxorrubicina/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Ciclofosfamida/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Camundongos SCID , Terapia Neoadjuvante , Transcriptoma/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Front Psychol ; 10: 62, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30814963

RESUMO

Over the past decade, a great deal of research has established the importance of cognitive processes in the control of energy intake and body weight. The present paper begins by identifying several of these cognitive processes. We then summarize evidence from human and nonhuman animal models, which shows how excess intake of obesity-promoting Western diet (WD) may have deleterious effects on these cognitive control processes. Findings that these effects may be manifested as early-life deficits in cognitive functioning and may also be associated with the emergence of serious late-life cognitive impairment are described. Consistent with these possibilities, we review evidence, obtained primarily from rodent models, that consuming a WD is associated with the emergence of pathophysiologies in the hippocampus, an important brain substrate for learning, memory, and cognition. The implications of this research for mechanism are discussed within the context of a "vicious-cycle model," which describes how eating a WD could impair hippocampal function, producing cognitive deficits that promote increased WD intake and body weight gain, which could contribute to further hippocampal dysfunction, cognitive decline, and excess eating and weight gain.

20.
Xenobiotica ; 49(12): 1388-1395, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30739533

RESUMO

Recently, there has been a rise in abuse of synthetic cannabinoids (SCBs). The consumption of SCBs results in various effects and can induce toxic reactions, including paranoia, seizures, tachycardia and even death. 1-Naphthyl 1-(4-fluorobenzyl)-1H-indole-3-carboxylate (FDU-PB-22) is a third generation SCB whose metabolic pathway has not been fully characterized. In this study, we conducted in vitro pharmacokinetic analysis of FDU-PB-22 metabolism. Metabolic reactions containing FDU-PB-22 and human liver microsomes (HLMs) were independent of NADPH but not UDP-glucuronic acid (UDPGA), suggesting that UDP-glucuronosyltransferases (UGTs) are the primary enzymes involved in this metabolism. It was further determined that the metabolite extensively formed after incubating FDU-PB-22 with UDPGA in HLMs was the glucuronide of FDU-PB-22 3-carboxyindole (FBI-COOH). Various hepatic UGTs showed enzymatic activity for FBI-COOH. A series of UGT inhibitors showed moderate to strong inhibition of FBI-COOH-glucuronidation in HLMs, suggesting that multiple UGT isoforms are involved in FBI-COOH-glucuronidation in the liver. Interestingly, an extra-hepatic isoform, UGT1A10, exhibited the highest activity with a Km value of 38 µM and a Vmax value of 5.90 nmol/min/mg. Collectively, these results suggest that both genetic mutations of and the co-administration of inhibitors for FDU-PB-22-metabolizing UGTs will likely increase the risk of FDU-PB-22-induced toxicity.


Assuntos
Canabinoides/química , Canabinoides/farmacocinética , Indóis/química , Indóis/farmacocinética , Microssomos Hepáticos/enzimologia , Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Humanos , Drogas Ilícitas/metabolismo , Drogas Ilícitas/farmacocinética , Inativação Metabólica , Microssomos Hepáticos/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Uridina Difosfato Ácido Glucurônico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA