Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 104949, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354970

RESUMO

Metabotropic glutamate receptor 5 (mGlu5) is widely expressed throughout the central nervous system and is involved in neuronal function, synaptic transmission, and a number of neuropsychiatric disorders such as depression, anxiety, and autism. Recent work from this lab showed that mGlu5 is one of a growing number of G protein-coupled receptors that can signal from intracellular membranes where it drives unique signaling pathways, including upregulation of extracellular signal-regulated kinase (ERK1/2), ETS transcription factor Elk-1, and activity-regulated cytoskeleton-associated protein (Arc). To determine the roles of cell surface mGlu5 as well as the intracellular receptor in a well-known mGlu5 synaptic plasticity model such as long-term depression, we used pharmacological isolation and genetic and physiological approaches to analyze spatially restricted pools of mGlu5 in striatal cultures and slice preparations. Here we show that both intracellular and cell surface receptors activate the phosphatidylinositol-3-kinase-protein kinase B-mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, whereas only intracellular mGlu5 activates protein phosphatase 2 and leads to fragile X mental retardation protein degradation and de novo protein synthesis followed by a protein synthesis-dependent increase in Arc and post-synaptic density protein 95. However, both cell surface and intracellular mGlu5 activation lead to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA2 internalization and chemically induced long-term depression albeit via different signaling mechanisms. These data underscore the importance of intracellular mGlu5 in the cascade of events associated with sustained synaptic transmission in the striatum.


Assuntos
Plasticidade Neuronal , Receptor de Glutamato Metabotrópico 5 , Transdução de Sinais , Proteínas de Transporte/genética , Plasticidade Neuronal/fisiologia , Fosfatidilinositol 3-Quinases/genética , Transmissão Sináptica , Animais , Camundongos , Receptor de Glutamato Metabotrópico 5/metabolismo
2.
ACS Chem Neurosci ; 9(9): 2162-2172, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-29409317

RESUMO

The trillions of synaptic connections within the human brain are shaped by experience and neuronal activity, both of which underlie synaptic plasticity and ultimately learning and memory. G protein-coupled receptors (GPCRs) play key roles in synaptic plasticity by strengthening or weakening synapses and/or shaping dendritic spines. While most studies of synaptic plasticity have focused on cell surface receptors and their downstream signaling partners, emerging data point to a critical new role for the very same receptors to signal from inside the cell. Intracellular receptors have been localized to the nucleus, endoplasmic reticulum, lysosome, and mitochondria. From these intracellular positions, such receptors may couple to different signaling systems, display unique desensitization patterns, and/or show distinct patterns of subcellular distribution. Intracellular GPCRs can be activated at the cell surface, endocytosed, and transported to an intracellular site or simply activated in situ by de novo ligand synthesis, diffusion of permeable ligands, or active transport of non-permeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in synaptic plasticity and learning and memory. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools.


Assuntos
Plasticidade Neuronal , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sinapses/metabolismo , Animais , Núcleo Celular/metabolismo , Espinhas Dendríticas/metabolismo , Endocitose , Retículo Endoplasmático , Humanos , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais
3.
Br J Pharmacol ; 175(21): 4026-4035, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-28872669

RESUMO

Traditionally, signal transduction from GPCRs is thought to emanate from the cell surface where receptor interactions with external stimuli can be transformed into a broad range of cellular responses. However, emergent data show that numerous GPCRs are also associated with various intracellular membranes where they may couple to different signalling systems, display unique desensitization patterns and/or exhibit distinct patterns of subcellular distribution. Although many GPCRs can be activated at the cell surface and subsequently endocytosed and transported to a unique intracellular site, other intracellular GPCRs can be activated in situ either via de novo ligand synthesis, diffusion of permeable ligands or active transport of nonpermeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in various biological functions including learning and memory, contractility and angiogenesis. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools. LINKED ARTICLES: This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.


Assuntos
Células/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Células/efeitos dos fármacos , Humanos , Ligantes , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
4.
J Biol Chem ; 292(9): 3637-3655, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28096465

RESUMO

Traditionally, G-protein-coupled receptors (GPCR) are thought to be located on the cell surface where they transmit extracellular signals to the cytoplasm. However, recent studies indicate that some GPCRs are also localized to various subcellular compartments such as the nucleus where they appear required for various biological functions. For example, the metabotropic glutamate receptor 5 (mGluR5) is concentrated at the inner nuclear membrane (INM) where it mediates Ca2+ changes in the nucleoplasm by coupling with Gq/11 Here, we identified a region within the C-terminal domain (amino acids 852-876) that is necessary and sufficient for INM localization of the receptor. Because these sequences do not correspond to known nuclear localization signal motifs, they represent a new motif for INM trafficking. mGluR5 is also trafficked to the plasma membrane where it undergoes re-cycling/degradation in a separate receptor pool, one that does not interact with the nuclear mGluR5 pool. Finally, our data suggest that once at the INM, mGluR5 is stably retained via interactions with chromatin. Thus, mGluR5 is perfectly positioned to regulate nucleoplasmic Ca2+in situ.


Assuntos
Membrana Nuclear/metabolismo , Receptor de Glutamato Metabotrópico 5/química , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Animais , Cálcio/química , Membrana Celular/metabolismo , Cromatina/química , Corpo Estriado/citologia , Citoplasma/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Glutamatos/química , Glicosilação , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Neurônios/metabolismo , Sinais de Localização Nuclear , Domínios Proteicos , Ratos
5.
Neurochem Res ; 42(1): 166-172, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27514643

RESUMO

The group 1 metabotropic glutamate receptor, mGluR5, is found on the cell surface as well as on intracellular membranes where it can mediate both overlapping and unique signaling effects. Previously we have shown that glutamate activates intracellular mGluR5 by entry through sodium-dependent transporters and/or cystine glutamate exchangers. Calibrated antibody labelling suggests that the glutamate concentration within neurons is quite high (~10 mM) raising the question as to whether intracellular mGluR5 is maximally activated at all times or whether a different ligand might be responsible for receptor activation. To address this issue, we used cellular, optical and molecular techniques to show that intracellular glutamate is largely sequestered in mitochondria; that the glutamate concentration necessary to activate intracellular mGluR5 is about ten-fold higher than what is necessary to activate cell surface mGluR5; and uncaging caged glutamate within neurons can directly activate the receptor. Thus these studies further the concept that glutamate itself serves as the ligand for intracellular mGluR5.


Assuntos
Corpo Estriado/metabolismo , Ácido Glutâmico/metabolismo , Líquido Intracelular/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácido Glutâmico/farmacologia , Líquido Intracelular/efeitos dos fármacos , Ratos , Receptor de Glutamato Metabotrópico 5/agonistas
6.
Nat Commun ; 7: 10604, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26837579

RESUMO

Spinal mGluR5 is a key mediator of neuroplasticity underlying persistent pain. Although brain mGluR5 is localized on cell surface and intracellular membranes, neither the presence nor physiological role of spinal intracellular mGluR5 is established. Here we show that in spinal dorsal horn neurons >80% of mGluR5 is intracellular, of which ∼60% is located on nuclear membranes, where activation leads to sustained Ca(2+) responses. Nerve injury inducing nociceptive hypersensitivity also increases the expression of nuclear mGluR5 and receptor-mediated phosphorylated-ERK1/2, Arc/Arg3.1 and c-fos. Spinal blockade of intracellular mGluR5 reduces neuropathic pain behaviours and signalling molecules, whereas blockade of cell-surface mGluR5 has little effect. Decreasing intracellular glutamate via blocking EAAT-3, mimics the effects of intracellular mGluR5 antagonism. These findings show a direct link between an intracellular GPCR and behavioural expression in vivo. Blockade of intracellular mGluR5 represents a new strategy for the development of effective therapies for persistent pain.


Assuntos
Comportamento Animal , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Células do Corno Posterior/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Neuropatia Ciática/metabolismo , Analgésicos Opioides/farmacologia , Animais , Western Blotting , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Transportador 3 de Aminoácido Excitatório/antagonistas & inibidores , Ácido Glutâmico/farmacologia , Hiperalgesia/patologia , Imuno-Histoquímica , Injeções Espinhais , Masculino , Microdiálise , Microscopia Confocal , Microscopia Eletrônica , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Morfina/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Células do Corno Posterior/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos , Ratos Long-Evans , Nervo Isquiático/lesões , Neuropatia Ciática/patologia
7.
Methods Mol Biol ; 1234: 113-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25304352

RESUMO

A growing number of G protein-coupled receptors (GPCRs) have been identified on nuclear membranes. In many cases, it is unknown how the intracellular GPCR is activated, how it is trafficked to nuclear membranes, and what long-term signaling consequences follow nuclear receptor activation. Here we describe how to isolate nuclei that are free from plasma membrane and cytoplasmic contamination yet still exhibit physiological properties following receptor activation.


Assuntos
Encéfalo/metabolismo , Núcleo Celular/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cálcio/metabolismo , Imagem Molecular/métodos , Membrana Nuclear/metabolismo , Cultura Primária de Células , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais
8.
Mol Pharmacol ; 86(6): 774-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25326002

RESUMO

Although G protein-coupled receptors are primarily known for converting extracellular signals into intracellular responses, some receptors, such as the group 1 metabotropic glutamate receptor, mGlu5, are also localized on intracellular membranes where they can mediate both overlapping and unique signaling effects. Thus, besides "ligand bias," whereby a receptor's signaling modality can shift from G protein dependence to independence, canonical mGlu5 receptor signaling can also be influenced by "location bias" (i.e., the particular membrane and/or cell type from which it signals). Because mGlu5 receptors play important roles in both normal development and in disorders such as Fragile X syndrome, autism, epilepsy, addiction, anxiety, schizophrenia, pain, dyskinesias, and melanoma, a large number of drugs are being developed to allosterically target this receptor. Therefore, it is critical to understand how such drugs might be affecting mGlu5 receptor function on different membranes and in different brain regions. Further elucidation of the site(s) of action of these drugs may determine which signal pathways mediate therapeutic efficacy.


Assuntos
Receptor de Glutamato Metabotrópico 5/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Transdução de Sinais/fisiologia , Animais , Arrestinas/fisiologia , Cálcio/metabolismo , Humanos , Fosforilação , Receptor de Glutamato Metabotrópico 5/análise , Receptor de Glutamato Metabotrópico 5/química , Receptor de Glutamato Metabotrópico 5/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/análise , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , beta-Arrestinas
9.
J Neurosci ; 34(13): 4589-98, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24672004

RESUMO

Metabotropic glutamate receptor 5 (mGluR5) is widely expressed throughout the CNS and participates in regulating neuronal function and synaptic transmission. Recent work in the striatum led to the groundbreaking discovery that intracellular mGluR5 activation drives unique signaling pathways, including upregulation of ERK1/2, Elk-1 (Jong et al., 2009) and Arc (Kumar et al., 2012). To determine whether mGluR5 signals from intracellular membranes of other cell types, such as excitatory pyramidal neurons in the hippocampus, we used dissociated rat CA1 hippocampal cultures and slice preparations to localize and characterize endogenous receptors. As in the striatum, CA1 neurons exhibited an abundance of mGluR5 both on the cell surface and intracellular membranes, including the endoplasmic reticulum and the nucleus where it colocalized with the sodium-dependent excitatory amino acid transporter, EAAT3. Inhibition of EAAT3 or sodium-free buffer conditions prevented accumulations of radiolabeled agonist. Using a pharmacological approach to isolate different pools of mGluR5, both intracellular and cell surface receptors induced oscillatory Ca(2+) responses in dissociated CA1 neurons; however, only intracellular mGluR5 activation triggered sustained high amplitude Ca(2+) rises in dendrites. Consistent with the notion that mGluR5 can signal from intracellular membranes, uncaging glutamate on a CA1 dendrite led to a local Ca(2+) rise, even in the presence of ionotropic and cell surface metabotropic receptor inhibitors. Finally, activation of intracellular mGluR5 alone mediated both electrically induced and chemically induced long-term depression, but not long-term potentiation, in acute hippocampal slices. These data suggest a physiologically relevant and important role for intracellular mGluR5 in hippocampal synaptic plasticity.


Assuntos
Hipocampo/citologia , Líquido Intracelular/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Transportador 3 de Aminoácido Excitatório/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Líquido Intracelular/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura
10.
PLoS One ; 7(9): e45149, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028814

RESUMO

Clinical symptoms of Parkinson's disease (PD) arise from the loss of substantia nigra neurons resulting in bradykinesia, rigidity, and tremor. Intracellular protein aggregates are a pathological hallmark of PD, but whether aggregates contribute to disease progression or represent a protective mechanism remains unknown. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been linked to PD in both familial cases and idiopathic cases and aggregates of the LRRK2 protein are present in postmortem PD brain samples. To determine whether LRRK2 contains a region of protein responsible for self-aggregation, two independent, bioinformatic algorithms were used to identify an N-terminal amino acid sequence as being aggregation-prone. Cells subsequently transfected with a construct containing this domain were found to have significantly increased protein aggregation compared to wild type protein or a construct containing only the last half of the molecule. Finally, in support of the hypothesis that aggregates represent a self-protection strategy, aggregated N-terminal LRRK2 constructs significantly attenuated cell death induced by the PD-mimetic, 6-hydroxydopamine (6-OHDA).


Assuntos
Oxidopamina/toxicidade , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Serina-Treonina Quinases/química , Algoritmos , Sequência de Aminoácidos , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Mesencéfalo/patologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Solubilidade , Relação Estrutura-Atividade
11.
J Biol Chem ; 287(8): 5412-25, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22179607

RESUMO

The G-protein coupled receptor, metabotropic glutamate receptor 5 (mGluR5), is expressed on both cell surface and intracellular membranes in striatal neurons. Using pharmacological tools to differentiate membrane responses, we previously demonstrated that cell surface mGluR5 triggers rapid, transient cytoplasmic Ca(2+) rises, resulting in c-Jun N-terminal kinase, Ca(2+)/calmodulin-dependent protein kinase, and cyclic adenosine 3',5'-monophosphate-responsive element-binding protein (CREB) phosphorylation, whereas stimulation of intracellular mGluR5 induces long, sustained Ca(2+) responses leading to the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and Elk-1 (Jong, Y. J., Kumar, V., and O'Malley, K. L. (2009) J. Biol. Chem. 284, 35827-35838). Using pharmacological, genetic, and bioinformatics approaches, the current findings show that both receptor populations up-regulate many immediate early genes involved in growth and differentiation. Activation of intracellular mGluR5 also up-regulates genes involved in synaptic plasticity including activity-regulated cytoskeletal-associated protein (Arc/Arg3.1). Mechanistically, intracellular mGluR5-mediated Arc induction is dependent upon extracellular and intracellular Ca(2+) and ERK1/2 as well as calmodulin-dependent kinases as known chelators, inhibitors, and a dominant negative Ca(2+)/calmodulin-dependent protein kinase II construct block Arc increases. Moreover, intracellular mGluR5-induced Arc expression requires the serum response transcription factor (SRF) as wild type but not SRF-deficient neurons show this response. Finally, increased Arc levels due to high K(+) depolarization is significantly reduced in response to a permeable but not an impermeable mGluR5 antagonist. Taken together, these data highlight the importance of intracellular mGluR5 in the cascade of events associated with sustained synaptic transmission.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Espaço Intracelular/metabolismo , Neostriado/citologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Receptores de Glutamato Metabotrópico/metabolismo , Transmissão Sináptica/genética , Regulação para Cima , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Genes Precoces/genética , Ácido Glutâmico/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/metabolismo , Ratos , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/genética , Fator de Resposta Sérica/metabolismo
12.
J Biol Chem ; 284(51): 35827-38, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19840937

RESUMO

G-protein-coupled receptors are thought to transmit extracellular signals to the cytoplasm from their position on the cell surface. Some receptors, including the metabotropic glutamate receptor 5 (mGluR5), are also highly expressed on intracellular membranes where they serve unknown functions. Here, we show that activation of cell surface versus intracellular mGluR5 results in unique Ca(2+) signatures leading to unique cellular responses. Specifically, activation of either cell surface or intracellular mGluR5 leads to JNK, Ca(2+)/calmodulin-dependent protein kinase (CaMK), and cyclic adenosine 3',5'-monophosphate-responsive element-binding protein phosphorylation, whereas activation of only intracellular mGluR5 leads to ERK1/2 and Elk-1 phosphorylation. Using pharmacological and genetic approaches, the present findings support a role for CaMK kinase in mediating mGluR5-dependent cyclic adenosine 3',5'-monophosphate-responsive element-binding protein phosphorylation, whereas CaMKII is upstream of intracellular mGluR5-mediated Elk-1 phosphorylation. Consistent with models showing Elk-1 regulating cascades of gene expression, the known Elk-1 targets c-fos and egr1 were up-regulated following intracellular mGluR5 activation, whereas a representative non-Elk-1 target, c-jun, was not. These findings emphasize that glutamate not only serves as a neurotransmitter for cell surface receptors but, when transported into the cell, can also activate intracellular receptors such as mGluR5. Glutamate activation of intracellular mGluR5 serves an important role in the regulation of nuclear Ca(2+), transcriptional activation, and gene expression necessary for physiological processes such as synaptic plasticity.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Núcleo Celular/genética , Células Cultivadas , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Plasticidade Neuronal/fisiologia , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/genética , Elementos de Resposta/fisiologia , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo
13.
J Biol Chem ; 283(20): 14072-83, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18337251

RESUMO

Recently we have shown that the metabotropic glutamate 5 (mGlu5) receptor can be expressed on nuclear membranes of heterologous cells or endogenously on striatal neurons where it can mediate nuclear Ca2+ changes. Here, pharmacological, optical, and genetic techniques were used to show that upon activation, nuclear mGlu5 receptors generate nuclear inositol 1,4,5-trisphosphate (IP3) in situ. Specifically, expression of an mGlu5 F767S mutant in HEK293 cells that blocks Gq/11 coupling or introduction of a dominant negative Galphaq construct in striatal neurons prevented nuclear Ca2+ changes following receptor activation. These data indicate that nuclear mGlu5 receptors couple to Gq/11 to mobilize nuclear Ca2+. Nuclear mGlu5-mediated Ca2+ responses could also be blocked by the phospholipase C (PLC) inhibitor, U73122, the phosphatidylinositol (PI) PLC inhibitor 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphorylcholine (ET-18-OCH3), or by using small interfering RNA targeted against PLCbeta1 demonstrating that PI-PLC is involved. Direct assessment of inositol phosphate production using a PIP2/IP3 "biosensor" revealed for the first time that IP3 can be generated in the nucleus following activation of nuclear mGlu5 receptors. Finally, both IP3 and ryanodine receptor blockers prevented nuclear mGlu5-mediated increases in intranuclear Ca2+. Collectively, this study shows that like plasma membrane receptors, activated nuclear mGlu5 receptors couple to Gq/11 and PLC to generate IP3-mediated release of Ca2+ from Ca2+-release channels in the nucleus. Thus the nucleus can function as an autonomous organelle independent of signals originating in the cytoplasm, and nuclear mGlu5 receptors play a dynamic role in mobilizing Ca2+ in a specific, localized fashion.


Assuntos
Núcleo Celular/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Técnicas Biossensoriais , Cálcio/metabolismo , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Estrenos/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Genes Dominantes , Humanos , Microscopia de Fluorescência/métodos , Modelos Biológicos , Membrana Nuclear/metabolismo , Pirrolidinonas/farmacologia , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
14.
J Neurochem ; 101(2): 458-69, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17250682

RESUMO

The Group I metabotropic glutamate receptor (mGlu1) plays an important role in neuromodulation, development, and synaptic plasticity. Using immunocytochemistry, subcellular fractionation, and western blot analysis, the present study shows that mGlu1a receptors are present on nuclear membranes in stably transfected human embryonic kidney 293 (HEK293) cells as well as being endogenously expressed on rat cortical nuclei. Both glutamate and the group I agonist, quisqualate, directly activate nuclear mGlu1 receptors leading to a characteristic oscillatory pattern of calcium flux in isolated HEK nuclei and a slow rise to plateau in isolated cortical nuclei. In either case calcium responses could be terminated upon application of the mGlu1-selective antagonist, 7-(hydroxyamino)cyclopropa[b]chromen-1a-carboxylate ethyl ester. Responses could also be blocked by ryanodine and inositol 1,4,5-triphosphate receptor inhibitors, demonstrating the involvement of these calcium channels. Agonist activation of intracellular receptors was driven by Na(+)-dependent and -independent processes in nuclei isolated from either HEK or cortical neurons. Finally, mGlu1 nuclear receptors were dramatically up-regulated in the course of post-natal development. Therefore, like the other Group I receptor, mGlu5, mGlu1 can function as an intracellular receptor, suggesting a more encompassing role for nuclear G protein-coupled receptors and downstream signaling elements in the regulation of nuclear events.


Assuntos
Sinalização do Cálcio/fisiologia , Diferenciação Celular/fisiologia , Núcleo Celular/metabolismo , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/ultraestrutura , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Humanos , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/agonistas , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/metabolismo , Regulação para Cima/fisiologia
15.
J Neurochem ; 99(1): 54-69, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16987235

RESUMO

Oxidative stress is a key player in a variety of neurodegenerative disorders including Parkinson's disease. Widely used as a parkinsonian mimetic, 6-hydroxydopamine (6-OHDA) generates reactive oxygen species (ROS) as well as coordinated changes in gene transcription associated with the unfolded protein response (UPR) and apoptosis. Whether 6-OHDA-induced UPR activation is dependent on ROS has not yet been determined. The present study used molecular indicators of oxidative stress to place 6-OHDA-generated ROS upstream of the appearance of UPR markers such as activating transcription factor 3 (ATF3) and phosphorylated stress-activated protein kinase (SAPK/JNK) signaling molecules. Antioxidants completely blocked 6-OHDA-mediated UPR activation and rescued cells from toxicity. Moreover, cytochrome c release from mitochondria was observed after the appearance of early UPR markers, suggesting that cellular stress pathways are responsible for its release. Mechanistically, the 6-OHDA-induced UPR was independent of intracellular calcium changes. Rather, evidence of protein oxidation was observed before the expression of UPR markers, suggesting that the rapid accumulation of damaged proteins triggered cell stress/UPR. Taken together, 6-OHDA-mediated cell death in dopaminergic cells proceeds via ROS-dependent UPR up-regulation which leads to an interaction with the intrinsic mitochondrial pathway and downstream caspase activation.


Assuntos
Morte Celular/fisiologia , Mesencéfalo/fisiologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Imuno-Histoquímica , Mesencéfalo/citologia , Mesencéfalo/fisiopatologia , Camundongos , Camundongos Endogâmicos , Oxidopamina/farmacologia , Transtornos Parkinsonianos , Superóxidos/metabolismo
16.
J Biol Chem ; 280(34): 30469-80, 2005 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-15958386

RESUMO

G-protein-coupled receptors are well known for converting an extracellular signal into an intracellular response. Here we showed that the metabotropic glutamate receptor 5 (mGlu5) plays a dynamic intracellular role in signal transduction. Activation of endogenously expressed mGlu5 on striatal nuclear membranes leads to rapid, sustained calcium (Ca2+) responses within the nucleoplasm that can be blocked by receptor-specific antagonists. Extracellular ligands such as glutamate and quisqualate reach nuclear receptors via both sodium-dependent transporters and cystine glutamate exchangers. Inhibition of either transport system blocks radiolabeled agonist uptake as well as agonist-induced nuclear Ca2+ changes. Impermeable antagonists like LY393053 and LY367366 not only blocked [3H]quisqualate binding but also prevented nontransported agonists such as (RS)-3,5-dihydroxyphenylglycine from inducing intracellular Ca2+ changes in heterologous cells. In contrast, neither LY compound prevented quisqualate or glutamate from activating intracellular receptors leading to Ca2+ responses. Inasmuch as Ca2+ can enter the nucleoplasm via the nuclear pore complex or from the nuclear lumen, the presence of nuclear mGlu5 receptors appeared to amplify the latter process generating a faster nuclear response in heterologous cells. In isolated striatal nuclei, nuclear receptor activation results in the de novo appearance of phosphorylated CREB protein. Thus, activation of nuclear mGlu5 receptors initiates a signaling cascade that is known to alter gene transcription and regulate many paradigms of synaptic plasticity. These studies demonstrated that mGlu5 receptors play a dynamic role in signaling both on and off the plasma membrane.


Assuntos
Núcleo Celular/metabolismo , Neurônios/citologia , Receptores de Glutamato Metabotrópico/química , Transporte Biológico , Cálcio/metabolismo , Membrana Celular/metabolismo , Corantes/farmacologia , Cisteína/química , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Inibidores Enzimáticos/farmacologia , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Glicina/análogos & derivados , Glicina/farmacologia , Imuno-Histoquímica , Ligantes , Luz , Microscopia de Fluorescência , Modelos Biológicos , Neurônios/metabolismo , Fosforilação , Propionatos/farmacologia , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Sódio/química , Frações Subcelulares/metabolismo , Tiofenos/farmacologia , Fatores de Tempo
17.
FASEB J ; 17(15): 2319-21, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14563691

RESUMO

Increased Ser phosphorylation of tau microtubule-associated protein in the brain is an early feature of Alzheimer's disease (AD) that precedes progression of the disease to frank neuronal disruption. We demonstrate that bradykinin (BK) B2 receptor activation leads to selective Ser phosphorylation of tau in skin fibroblasts from persons who have or will develop AD due to Presenilin 1 mutations or Trisomy 21, but not in skin fibroblasts from normal individuals at any age. The increased signal transduction in AD fibroblasts that culminates in tau Ser phosphorylation reflects modification of the G protein-coupled BK B2 receptors themselves. Both the BK B2 receptor modification and BK-mediated tau Ser phosphorylation are dependent on activation of protein kinase C and can be detected in fibroblasts from persons with Trisomy 21 two decades before the characteristic onset of AD. This dysregulated signaling cascade in AD may thus be expressed throughout life as an aberrant pathway in peripheral tissues more accessible than brain for molecular analysis. The sites of greatest BK B2 receptor expression in brain overlap with those areas displaying the earliest pathology in the course of AD, suggesting that BK receptor pathway dysfunction may be a molecular signature yielding information about the pathogenesis of AD.


Assuntos
Doença de Alzheimer/metabolismo , Fibroblastos/metabolismo , Receptor B2 da Bradicinina/metabolismo , Serina/metabolismo , Proteínas tau/metabolismo , Adulto , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Bradicinina/farmacologia , Linhagem Celular , Síndrome de Down/genética , Síndrome de Down/metabolismo , Fibroblastos/enzimologia , Humanos , Proteínas de Membrana/genética , Modelos Biológicos , Mutação , Fosforilação , Presenilina-1 , Proteína Quinase C/metabolismo , Transdução de Sinais , Pele/citologia , Proteínas tau/química
18.
J Biol Chem ; 278(30): 28210-9, 2003 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-12736269

RESUMO

Nuclear Ca2+ plays a critical role in many cellular functions although its mode (s) of regulation is unclear. This study shows that the metabotropic glutamate receptor, mGlu5, mobilizes nuclear Ca2+ independent of cytosolic Ca2+ regulation. Immunocytochemical, ultrastructural, and subcellular fractionation techniques revealed that the metabotropic glutamate receptor, mGlu5, can be localized to nuclear membranes in heterologous cells as well as midbrain and cortical neurons. Nuclear mGlu5 receptors derived from HEK cells or cortical cell types bound [3H]quisqualate. When loaded with Oregon Green BAPTA, nuclei isolated from mGlu5-expressing HEK cells responded to the addition of glutamate with rapid, oscillatory [Ca2+] elevations that were blocked by antagonist or EGTA. In contrast, carbachol-activation of endogenous muscarinic receptors led to cytoplasmic but not nuclear Ca2+ responses. Similarly, activation of mGlu5 receptors expressed on neuronal nuclei led to sustained Ca2+ oscillatory responses. These results suggest mGlu5 may mediate intranuclear signaling pathways.


Assuntos
Cálcio/metabolismo , Núcleo Celular/metabolismo , Ácido Egtázico/análogos & derivados , Membranas Intracelulares/metabolismo , Neurônios/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Carbacol/farmacologia , Linhagem Celular , Citoplasma/metabolismo , Ácido Egtázico/farmacologia , Humanos , Imuno-Histoquímica , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Modelos Biológicos , Ratos , Ratos Long-Evans , Receptor de Glutamato Metabotrópico 5 , Transdução de Sinais , Frações Subcelulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA