Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 8(11)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266442

RESUMO

A commercially available microfluidics flow cell was utilized together with widefield fluorescence microscopy to evaluate the effects of disinfectants on bacterial strains. The flow cell's inner surface supports the formation of biofilms of numerous bacterial species. The modular setup of the flow cell accessories allows connection to syringes, pumps and collection vials, facilitating aseptic experiments in a controlled fluidics environment which can be documented with precisely timed microscopy imaging. The flow cell is inoculated with a suspension of bacteria in a nutrient medium and incubated for several days allowing bacterial cells to form a biofilm. Shortly before performing an assay, the biofilm is labelled with a dual-fluorescent DNA probe which distinguishes unharmed and damaged bacteria. Then a disinfectant sample (or control) is gently injected and time-lapse imaging is used for quantifying the course of bacterial biomass response. We use a simplified widefield microscopy method that allows intensive recording and quantification of time series of two-dimensional frames for tracking the course of disinfectant action on a variety of microbial strains. This procedure has potential for the rapid evaluation of novel products.

2.
Nat Protoc ; 15(5): 1878, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32313255

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Nat Protoc ; 15(5): 1585-1611, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32235926

RESUMO

When used appropriately, a confocal fluorescence microscope is an excellent tool for making quantitative measurements in cells and tissues. The confocal microscope's ability to block out-of-focus light and thereby perform optical sectioning through a specimen allows the researcher to quantify fluorescence with very high spatial precision. However, generating meaningful data using confocal microscopy requires careful planning and a thorough understanding of the technique. In this tutorial, the researcher is guided through all aspects of acquiring quantitative confocal microscopy images, including optimizing sample preparation for fixed and live cells, choosing the most suitable microscope for a given application and configuring the microscope parameters. Suggestions are offered for planning unbiased and rigorous confocal microscope experiments. Common pitfalls such as photobleaching and cross-talk are addressed, as well as several troubling instrumentation problems that may prevent the acquisition of quantitative data. Finally, guidelines for analyzing and presenting confocal images in a way that maintains the quantitative nature of the data are presented, and statistical analysis is discussed. A visual summary of this tutorial is available as a poster (https://doi.org/10.1038/s41596-020-0307-7).


Assuntos
Microscopia Confocal , Microscopia de Fluorescência , Fixação de Tecidos
7.
Front Neurosci ; 13: 954, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551702

RESUMO

Visible light is the principal stimulus for resetting the mammalian central circadian pacemaker. Circadian phase resetting is most sensitive to short-wavelength (blue) visible light. We examined the effects of removing short-wavelengths < 500 nm from polychromatic white light using optical filters on circadian phase resetting in rats. Under high irradiance conditions, both long- (7 h) and short- (1 h) duration short-wavelength filtered (< 500 nm) light exposure attenuated phase-delay shifts in locomotor activity rhythms by (∼40-50%) as compared to unfiltered light exposure. However, there was no attenuation in phase resetting under low irradiance conditions. Additionally, the reduction in phase-delay shifts corresponded to regionally specific attenuation in molecular markers of pacemaker activation in response to light exposure, including c-FOS, Per1 and Per2. These results demonstrate that removing short-wavelengths from polychromatic white light can attenuate circadian phase resetting in an irradiance dependent manner. These results have important implications for designing and optimizing lighting interventions to enhance circadian adaptation.

8.
Am J Physiol Endocrinol Metab ; 317(5): E760-E772, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31310580

RESUMO

Adiponectin, a highly abundant polypeptide hormone in plasma, plays an important role in the regulation of energy metabolism in a wide variety of tissues, as well as providing important beneficial effects in diabetes, inflammation, and cardiovascular disease. To act on target tissues, adiponectin must move from the circulation to the interstitial space, suggesting that vascular permeability plays an important role in regulating adiponectin action. To test this hypothesis, fluorescently labeled adiponectin was used to monitor its biodistribution in mice with streptozotocin-induced diabetes (STZD). Adiponectin was, indeed, found to have increased sequestration in the highly fenestrated liver and other tissues within 90 min in STZD mice. In addition, increased myocardial adiponectin was detected and confirmed using computed tomography (CT) coregistration. This provided support of adiponectin delivery to affected cardiac tissue as a cardioprotective mechanism. Higher adiponectin content in the STZD heart tissues was further examined by ex vivo fluorescence molecular tomography (FMT) imaging, immunohistochemistry, and Western blot analysis. In vitro mechanistic studies using an endothelial monolayer on inserts and three-dimensional microvascular networks on microfluidic chips further confirmed that adiponectin flux was increased by high glucose. However, in the in vitro model and mouse heart tissue, high glucose levels did not change adiponectin receptor levels. An examination of the tight junction (TJ) complex revealed a decrease in the TJ protein claudin (CLDN)-7 in high glucose-treated endothelial cells, and the functional significance of this change was underscored by increased endothelium permeability upon siRNA-mediated knockdown of CLDN-7. Our data support the idea that glucose-induced effects on permeability of the vascular endothelium contribute to the actions of adiponectin by regulating its transendothelial movement from blood to the interstitial space. These observations are physiologically significant and critical when considering ways to harness the therapeutic potential of adiponectin for diabetes.


Assuntos
Adiponectina/metabolismo , Permeabilidade Capilar , Diabetes Mellitus Experimental/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/patologia , Células Endoteliais/metabolismo , Fluorescência , Técnicas de Silenciamento de Genes , Glucose/farmacologia , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Miocárdio/metabolismo , Ratos , Ratos Wistar , Distribuição Tecidual , Tomografia/métodos , Tomografia Computadorizada por Raios X
9.
Elife ; 42015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26418743

RESUMO

Spatially targeted optical microproteomics (STOMP) is a novel proteomics technique for interrogating micron-scale regions of interest (ROIs) in mammalian tissue, with no requirement for genetic manipulation. Methanol or formalin-fixed specimens are stained with fluorescent dyes or antibodies to visualize ROIs, then soaked in solutions containing the photo-tag: 4-benzoylbenzyl-glycyl-hexahistidine. Confocal imaging along with two photon excitation are used to covalently couple photo-tags to all proteins within each ROI, to a resolution of 0.67 µm in the xy-plane and 1.48 µm axially. After tissue solubilization, photo-tagged proteins are isolated and identified by mass spectrometry. As a test case, we examined amyloid plaques in an Alzheimer's disease (AD) mouse model and a post-mortem AD case, confirming known plaque constituents and discovering new ones. STOMP can be applied to various biological samples including cell lines, primary cell cultures, ex vivo specimens, biopsy samples, and fixed post-mortem tissue.


Assuntos
Espectrometria de Massas , Microscopia Confocal/métodos , Doenças Neurodegenerativas/patologia , Imagem Óptica/métodos , Proteínas/análise , Proteômica/métodos , Animais , Camundongos
10.
Mol Cell Proteomics ; 14(11): 3000-14, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26269332

RESUMO

The tau protein is central to the etiology of several neurodegenerative diseases, including Alzheimer's disease, a subset of frontotemporal dementias, progressive supranuclear palsy and dementia following traumatic brain injury, yet the proteins it interacts with have not been studied using a systematic discovery approach. Here we employed mild in vivo crosslinking, isobaric labeling, and tandem mass spectrometry to characterize molecular interactions of human tau in a neuroblastoma cell model. The study revealed a robust association of tau with the ribonucleoproteome, including major protein complexes involved in RNA processing and translation, and documented binding of tau to several heat shock proteins, the proteasome and microtubule-associated proteins. Follow-up experiments determined the relative contribution of cellular RNA to the tau interactome and mapped interactions to N- or C-terminal tau domains. We further document that expression of P301L mutant tau disrupts interactions of the C-terminal half of tau with heat shock proteins and the proteasome. The data are consistent with a model whereby a higher propensity of P301L mutant tau to aggregate may reflect a perturbation of its chaperone-assisted stabilization and proteasome-dependent degradation. Finally, using a global proteomics approach, we show that heterologous expression of a tau construct that lacks the C-terminal domain, including the microtubule binding domain, does not cause a discernible shift of the proteome except for a significant direct correlation of steady-state levels of tau and cystatin B.


Assuntos
Células Epiteliais/metabolismo , Chaperonas Moleculares/metabolismo , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas tau/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Cistatina B/genética , Cistatina B/metabolismo , Células Epiteliais/citologia , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Anotação de Sequência Molecular , Mutação , Neurônios/citologia , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Ribonucleoproteínas/genética , Transdução de Sinais , Proteínas tau/genética
11.
J Biomol Tech ; 26(2): 54-65, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25802490

RESUMO

The confocal fluorescence microscope has become a popular tool for life sciences researchers, primarily because of its ability to remove blur from outside of the focal plane of the image. Several different kinds of confocal microscopes have been developed, each with advantages and disadvantages. This article will cover the grid confocal, classic confocal laser-scanning microscope (CLSM), the resonant scanning-CLSM, and the spinning-disk confocal microscope. The way each microscope technique works, the best applications the technique is suited for, the limitations of the technique, and new developments for each technology will be presented. Researchers who have access to a range of different confocal microscopes (e.g., through a local core facility) should find this paper helpful for choosing the best confocal technology for specific imaging applications. Others with funding to purchase an instrument should find the article helpful in deciding which technology is ideal for their area of research.


Assuntos
Iluminação/métodos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia Confocal/economia , Microscopia de Fluorescência/instrumentação
12.
Cell Adh Migr ; 8(5): 440-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482647

RESUMO

The wound healing assay is used in a range of disciplines to study the coordinated movement of a cell population. In this technical review, we describe the workflow of the wound healing assay as monitored by optical microscopy. Although the assay is straightforward, a lack of standardization in its application makes it difficult to compare results and reproduce experiments among researchers. We recommend general guidelines for consistency, including: (1) sample preparation including the creation of the gap, (2) microscope equipment requirements, (3) image acquisition, and (4) the use of image analysis to measure the gap size and its rate of closure over time. We also describe parameters that are specific to the particular research question, such as seeding density and matrix coatings. All of these parameters must be carefully controlled within a given set of experiments in order to achieve accurate and reproducible results.


Assuntos
Bioensaio/métodos , Microscopia , Cicatrização/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos
13.
Methods Cell Biol ; 123: 113-34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24974025

RESUMO

Quantitative optical microscopy has become the norm, with the confocal laser-scanning microscope being the workhorse of many imaging laboratories. Generating quantitative data requires a greater emphasis on the accurate operation of the microscope itself, along with proper experimental design and adequate controls. The microscope, which is more accurately an imaging system, cannot be treated as a "black box" with the collected data viewed as infallible. There needs to be regularly scheduled performance testing that will ensure that quality data are being generated. This regular testing also allows for the tracking of metrics that can point to issues before they result in instrument malfunction and downtime. In turn, images must be collected in a manner that is quantitative with maximal signal to noise (which can be difficult depending on the application) without data clipping. Images must then be processed to correct for background intensities, fluorophore cross talk, and uneven field illumination. With advanced techniques such as spectral imaging, Förster resonance energy transfer, and fluorescence-lifetime imaging microscopy, experimental design needs to be carefully planned out and include all appropriate controls. Quantitative confocal imaging in all of these contexts and more will be explored within the chapter.


Assuntos
Análise de Célula Única/métodos , Animais , Humanos , Lasers , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Análise de Célula Única/instrumentação , Imagem com Lapso de Tempo
14.
Neoplasia ; 14(4): 324-34, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22577347

RESUMO

BACKGROUND: Surviving cells may repopulate tumors between courses of chemotherapy, thereby reducing the effectiveness of treatment. Using a novel quantitative method, we characterize the influence of the tumor microenvironment on repopulation of surviving cells in human tumor xenografts after paclitaxel treatment and evaluate the potential of gefitinib, an epidermal growth factor receptor (EGFR) inhibitor, to inhibit repopulation. METHODS: High-EGFR-expressing A431 xenografts and low-EGFR-expressing MCF-7 xenografts were treated with paclitaxel or gefitinib. Time-dependent changes in cell proliferation (Ki67) and apoptosis (cleaved caspase 3) in relation to total and functional tumor blood vessels (recognized by CD31 and a flow marker), and regions of hypoxia (recognized by EF5) were quantified using fluorescence microscopy. RESULTS: Decrease in functional tumor vasculature and in cell proliferation and increase in apoptosis were observed in A431 xenografts after treatment with either paclitaxel or gefitinib. There was a rebound in functional vasculature and cell proliferation ≈ 12 days after treatment with paclitaxel, and repopulation was observed from tumor cells close to regions of hypoxia. Cell proliferation increased ≈ 5 days after the last dose of gefitinib. There were minimal effects of paclitaxel or gefitinib on cell proliferation, cell death, or tumor vasculature in MCF-7 xenografts. CONCLUSIONS: Repopulation in A431 xenografts after treatment with paclitaxel was associated with changes in functional tumor vasculature. Gefitinib decreased cell proliferation in EGFR-overexpressing tumor xenografts, suggesting its potential to inhibit repopulation when used in sequence with chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/análise , Neoplasias Experimentais/tratamento farmacológico , Paclitaxel/administração & dosagem , Quinazolinas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Gefitinibe , Humanos , Imuno-Histoquímica , Antígeno Ki-67/biossíntese , Camundongos , Camundongos Nus , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Natl Cancer Inst ; 99(10): 811-22, 2007 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-17505076

RESUMO

BACKGROUND: Normal epithelial cells undergo anoikis, or apoptosis on loss of anchorage to the extracellular matrix, by initiating the death receptor pathway of caspase activation. However, malignant epithelial cells with metastatic potential resist anoikis and can survive in an anchorage-independent fashion. We hypothesized that c-Fas-associated death domain-like interleukin-1-converting enzyme-like inhibitory protein (FLIP), an endogenous inhibitor of death receptor signaling, may suppress anoikis. METHODS: We assessed viability and apoptosis of PPC-1 prostate cancer cells cultured in adherent and suspension conditions using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt and Annexin V staining assays. Expression of the death receptor Fas and activation of caspase 8 were measured using flow cytometry. Expression of Fas ligand was measured by reverse transcription-polymerase chain reaction. FLIP protein expression was measured by immunoblotting. Small-molecule inhibitors of FLIP (including the death receptor sensitizer 5809354) and small-interfering (si) RNA directed against FLIP were used to assess the effects of FLIP inhibition on anoikis of prostate cancer cells in vitro and in vivo. All statistical tests were two-sided. RESULTS: PPC-1 cells cultured in suspension resisted anoikis, despite increased expression of Fas (0 versus 8 hours, mean relative percent expression = 100% versus 135%, difference = 35%, 95% confidence interval [CI] = 10% to 61%; P = .02) and Fas L (0 versus 24 hours, mean relative percent expression = 100% versus 208%, difference = 108%, 95% CI = 18% to 197%; P = .02). Knockdown of FLIP expression by siRNA or treatment with 5809354 sensitized prostate cancer cells to anoikis (control siRNA versus FLIP siRNA at 10 nM, mean relative percent viability = 95% versus 51%, difference = 44%, 95% CI = 34% to 54%; P<.001; control versus 5809354 at 20 microM, mean relative percent viability = 96% versus 52%, difference = 44%, 95% CI = 13% to 75%; P = .015). Inhibition of FLIP expression specifically activated caspase 8 in PPC-1 cells grown in suspension but not adherent conditions and decreased the metastatic potential of circulating PPC-1 cells in vivo. CONCLUSIONS: FLIP may be a suppressor of anoikis and therefore a possible target for antimetastatic therapeutic strategies.


Assuntos
Anoikis/fisiologia , Metástase Neoplásica , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/biossíntese , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Immunoblotting , Masculino , Camundongos , Camundongos SCID , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Receptor fas/biossíntese
17.
J Muscle Res Cell Motil ; 23(7-8): 639-49, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12952063

RESUMO

The actin system forms a supramolecular, membrane-associated network that serves multiple functions in Dictyostelium cells, including cell motility controlled by chemoattractant, phagocytosis, macropinocytosis, and cytokinesis. In executing these functions the monomeric G-actin polymerizes reversibly, and the actin filaments are assembled into membrane-anchored networks together with other proteins involved in shaping the networks and controlling their dynamics. Most impressive is the speed at which actin-based structures are built, reorganized, or disassembled. We used GFP-tagged coronin and Arp3, an intrinsic constituent of the Arp2/3 complex, as examples of proteins that are recruited to highly dynamic actin-filament networks. By fluorescence recovery after photobleaching (FRAP), average exchange rates of cell-cortex bound coronin were estimated. A nominal value of 5 s for half-maximal incorporation of coronin into the cortex, and a value of 7 s for half-maximal dissociation from cortical binding sites has been obtained. Actin dynamics implies also flow of F-actin from sites of polymerization to sites of depolymerization, i.e. to the tail of a migrating cell, the base of a phagocytic cup, and the cleavage furrow in a mitotic cell. To monitor this flow, we expressed in Dictyostelium cells a GFP-tagged actin-binding fragment of talin. This fragment (GFP-TalC63) translocates from the front to the tail during cell migration and from the polar regions to the cleavage furrow during mitotic cell division. The intrinsic dynamics of the actin system can be manipulated in vivo by drugs or other probes that act either as inhibitors of actin polymerization or as stabilizers of filamentous actin. In order to investigate structure-function relationships in the actin system, a technique of reliably arresting transient network structures is in demand. We discuss the potential of electron tomography of vitrified cells to visualize actin networks in their native association with membranes.


Assuntos
Actinas/fisiologia , Dictyostelium/fisiologia , Actinas/genética , Animais , Divisão Celular , Quimiotaxia , Dictyostelium/citologia , Genes Reporter , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Movimento/fisiologia , Fagocitose/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA