Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Nano Lett ; 24(28): 8487-8494, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38975639

RESUMO

Understanding the structure of biomolecules is vital for deciphering their roles in biological systems. Single-molecule techniques have emerged as alternatives to conventional ensemble structure analysis methods for uncovering new biology in molecular dynamics and interaction studies, yet only limited structural information could be obtained experimentally. Here, we address this challenge by introducing iMAX FRET, a one-pot method that allows ab initio 3D profiling of individual molecules using two-color FRET measurements. Through the stochastic exchange of fluorescent weak binders, iMAX FRET simultaneously assesses multiple distances on a biomolecule within a few minutes, which can then be used to reconstruct the coordinates of up to four points in each molecule, allowing structure-based inference. We demonstrate the 3D reconstruction of DNA nanostructures, protein quaternary structures, and conformational changes in proteins. With iMAX FRET, we provide a powerful approach to advance the understanding of biomolecular structure by expanding conventional FRET analysis to three dimensions.


Assuntos
DNA , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , DNA/química , Imagem Individual de Molécula/métodos , Nanoestruturas/química , Proteínas/química , Simulação de Dinâmica Molecular
2.
Nat Commun ; 15(1): 5499, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951509

RESUMO

Argonaute proteins are the central effectors of RNA-guided RNA silencing pathways in eukaryotes, playing crucial roles in gene repression and defense against viruses and transposons. Eukaryotic Argonautes are subdivided into two clades: AGOs generally facilitate miRNA- or siRNA-mediated silencing, while PIWIs generally facilitate piRNA-mediated silencing. It is currently unclear when and how Argonaute-based RNA silencing mechanisms arose and diverged during the emergence and early evolution of eukaryotes. Here, we show that in Asgard archaea, the closest prokaryotic relatives of eukaryotes, an evolutionary expansion of Argonaute proteins took place. In particular, a deep-branching PIWI protein (HrAgo1) encoded by the genome of the Lokiarchaeon 'Candidatus Harpocratesius repetitus' shares a common origin with eukaryotic PIWI proteins. Contrasting known prokaryotic Argonautes that use single-stranded DNA as guides and/or targets, HrAgo1 mediates RNA-guided RNA cleavage, and facilitates gene silencing when expressed in human cells and supplied with miRNA precursors. A cryo-EM structure of HrAgo1, combined with quantitative single-molecule experiments, reveals that the protein displays structural features and target-binding modes that are a mix of those of eukaryotic AGO and PIWI proteins. Thus, this deep-branching archaeal PIWI may have retained an ancestral molecular architecture that preceded the functional and mechanistic divergence of eukaryotic AGOs and PIWIs.


Assuntos
Proteínas Argonautas , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Humanos , Interferência de RNA , Archaea/genética , Archaea/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Microscopia Crioeletrônica , MicroRNAs/genética , MicroRNAs/metabolismo , Evolução Molecular , Filogenia
3.
Nat Nanotechnol ; 19(5): 652-659, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38351230

RESUMO

Proteins are the primary functional actors of the cell. While proteoform diversity is known to be highly biologically relevant, current protein analysis methods are of limited use for distinguishing proteoforms. Mass spectrometric methods, in particular, often provide only ambiguous information on post-translational modification sites, and sequences of co-existing modifications may not be resolved. Here we demonstrate fluorescence resonance energy transfer (FRET)-based single-molecule protein fingerprinting to map the location of individual amino acids and post-translational modifications within single full-length protein molecules. Our data show that both intrinsically disordered proteins and folded globular proteins can be fingerprinted with a subnanometer resolution, achieved by probing the amino acids one by one using single-molecule FRET via DNA exchange. This capability was demonstrated through the analysis of alpha-synuclein, an intrinsically disordered protein, by accurately quantifying isoforms in mixtures using a machine learning classifier, and by determining the locations of two O-GlcNAc moieties. Furthermore, we demonstrate fingerprinting of the globular proteins Bcl-2-like protein 1, procalcitonin and S100A9. We anticipate that our ability to perform proteoform identification with the ultimate sensitivity may unlock exciting new venues in proteomics research and biomarker-based diagnosis.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Intrinsicamente Desordenadas/química , Imagem Individual de Molécula/métodos , Aprendizado de Máquina , Mapeamento de Peptídeos/métodos
4.
iScience ; 26(2): 105958, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36718371

RESUMO

The inherent properties of 2D materials-light mass, high out-of-plane flexibility, and large surface area-promise great potential for precise and accurate nanomechanical mass sensing, but their application is often hampered by surface contamination. Here we demonstrate a tri-layer graphene nanomechanical resonant mass sensor with sub-attogram resolution at room temperature, fabricated by a bottom-up process. We found that Joule-heating is effective in cleaning the graphene membrane surface, which results in a large improvement in the stability of the resonance frequency. We characterized the sensor by depositing Cr metal using a stencil mask and found a mass-resolution that is sufficient to weigh very small particles, like large proteins and protein complexes, with potential applications in the fields of nanobiology and medicine.

5.
Mol Cell ; 82(10): 1788-1805, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35561688

RESUMO

Next-generation sequencing techniques have led to a new quantitative dimension in the biological sciences. In particular, integrating sequencing techniques with biophysical tools allows sequence-dependent mechanistic studies. Using the millions of DNA clusters that are generated during sequencing to perform high-throughput binding affinity and kinetics measurements enabled the construction of energy landscapes in sequence space, uncovering relationships between sequence, structure, and function. Here, we review the approaches to perform ensemble fluorescence experiments on next-generation sequencing chips for variations of DNA, RNA, and protein sequences. As the next step, we anticipate that these fluorescence experiments will be pushed to the single-molecule level, which can directly uncover kinetics and molecular heterogeneity in an unprecedented high-throughput fashion. Molecular biophysics in sequence space, both at the ensemble and single-molecule level, leads to new mechanistic insights. The wide spectrum of applications in biology and medicine ranges from the fundamental understanding of evolutionary pathways to the development of new therapeutics.


Assuntos
DNA , Sequenciamento de Nucleotídeos em Larga Escala , Biofísica , DNA/química , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Molecular , Análise de Sequência de DNA/métodos
6.
iScience ; 24(11): 103239, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34729466

RESUMO

Single-molecule protein identification is an unrealized concept with potentially ground-breaking applications in biological research. We propose a method called FRET X (Förster Resonance Energy Transfer via DNA eXchange) fingerprinting, in which the FRET efficiency is read out between exchangeable dyes on protein-bound DNA docking strands and accumulated FRET efficiencies constitute the fingerprint for a protein. To evaluate the feasibility of this approach, we simulated fingerprints for hundreds of proteins using a coarse-grained lattice model and experimentally demonstrated FRET X fingerprinting on model peptides. Measured fingerprints are in agreement with our simulations, corroborating the validity of our modeling approach. In a simulated complex mixture of >300 human proteins of which only cysteines, lysines, and arginines were labeled, a support vector machine was able to identify constituents with 95% accuracy. We anticipate that our FRET X fingerprinting approach will form the basis of an analysis tool for targeted proteomics.

7.
Opt Express ; 29(18): 27961-27974, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34614938

RESUMO

Localization microscopy offers resolutions down to a single nanometer but currently requires additional dedicated hardware or fiducial markers to reduce resolution loss from the drift of the sample. Drift estimation without fiducial markers is typically implemented using redundant cross correlation (RCC). We show that RCC has sub-optimal precision and bias, which leaves room for improvement. Here, we minimize a bound on the entropy of the obtained localizations to efficiently compute a precise drift estimate. Within practical compute-time constraints, simulations show a 5x improvement in drift estimation precision over the widely used RCC algorithm. The algorithm operates directly on fluorophore localizations and is tested on simulated and experimental datasets in 2D and 3D. An open source implementation is provided, implemented in Python and C++, and can utilize a GPU if available.

8.
iScience ; 24(10): 103161, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34693220
9.
Biophys J ; 120(16): 3253-3260, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34237288

RESUMO

Förster resonance energy transfer (FRET) is a useful phenomenon in biomolecular investigations, as it can be leveraged for nanoscale measurements. The optical signals produced by such experiments can be analyzed by fitting a statistical model. Several software tools exist to fit such models in an unsupervised manner but lack the flexibility to adapt to different experimental setups and require local installations. Here, we propose to fit models to optical signals more intuitively by adopting a semisupervised approach, in which the user interactively guides the model to fit a given data set, and introduce FRETboard, a web tool that allows users to provide such guidance. We show that our approach is able to closely reproduce ground truth FRET statistics in a wide range of simulated single-molecule scenarios and correctly estimate parameters for up to 11 states. On in vitro data, we retrieve parameters identical to those obtained by laborious manual classification in a fraction of the required time. Moreover, we designed FRETboard to be easily extendable to other models, allowing it to adapt to future developments in FRET measurement and analysis.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Software , Nanotecnologia
10.
Trends Biochem Sci ; 46(11): 918-930, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34247944

RESUMO

Single-molecule localization microscopy (SMLM) is a potent tool to examine biological systems with unprecedented resolution, enabling the investigation of increasingly smaller structures. At the forefront of these developments is DNA-based point accumulation for imaging in nanoscale topography (DNA-PAINT), which exploits the stochastic and transient binding of fluorescently labeled DNA probes. In its early stages the implementation of DNA-PAINT was burdened by low-throughput, excessive acquisition time, and difficult integration with live-cell imaging. However, recent advances are addressing these challenges and expanding the range of applications of DNA-PAINT. We review the current state of the art of DNA-PAINT in light of these advances and contemplate what further developments remain indispensable to realize live-cell imaging.


Assuntos
DNA , Imagem Individual de Molécula , DNA/química , Microscopia de Fluorescência/métodos
11.
Nat Methods ; 18(6): 604-617, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34099939

RESUMO

Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level, single-cell profiling of proteomes is not yet established. Here we describe new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry that will eventually enable broad sequence coverage in single-cell profiling. These technologies will in turn facilitate biological discovery and open new avenues for ultrasensitive disease diagnostics.


Assuntos
Análise de Sequência de Proteína/métodos , Imagem Individual de Molécula/métodos , Espectrometria de Massas/métodos , Nanotecnologia , Proteínas/química , Proteômica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
13.
Patterns (N Y) ; 2(5): 100256, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34036291

RESUMO

Single-molecule techniques allow the visualization of the molecular dynamics of nucleic acids and proteins with high spatiotemporal resolution. Valuable kinetic information of biomolecules can be obtained when the discrete states within single-molecule time trajectories are determined. Here, we present a fast, automated, and bias-free step detection method, AutoStepfinder, that determines steps in large datasets without requiring prior knowledge on the noise contributions and location of steps. The analysis is based on a series of partition events that minimize the difference between the data and the fit. A dual-pass strategy determines the optimal fit and allows AutoStepfinder to detect steps of a wide variety of sizes. We demonstrate step detection for a broad variety of experimental traces. The user-friendly interface and the automated detection of AutoStepfinder provides a robust analysis procedure that enables anyone without programming knowledge to generate step fits and informative plots in less than an hour.

14.
Elife ; 102021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33779550

RESUMO

Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Biologia Molecular/métodos , Imagem Individual de Molécula/métodos , Biologia Molecular/instrumentação , Imagem Individual de Molécula/instrumentação
15.
ACS Chem Biol ; 16(4): 596-603, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33769784

RESUMO

Clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins, particularly Cas9, have provided unprecedented control on targeting and editing specific DNA sequences. If the target sequences are prone to folding into noncanonical secondary structures, such as G-quadruplex (GQ), the conformational states and activity of the CRISPR-Cas9 complex may be influenced, but the impact has not been assessed. Using single molecule FRET, we investigated structural characteristics of the complex formed by CRISPR-Cas9 and target DNA, which contains a potentially GQ forming sequence (PQS) in either the target or the nontarget strand (TS or NTS). We observed different conformational states and dynamics depending on the stability of the GQ and the position of PQS. When PQS was in NTS, we observed evidence for GQ formation for both weak and stable GQs. This is consistent with R-loop formation between TS and crRNA releasing NTS from Watson-Crick pairing and facilitating secondary structure formation in it. When PQS was in TS, R-loop formation was adequate to maintain a weak GQ in the unfolded state but not a GQ with moderate or high stability. The observed structural heterogeneity within the target dsDNA and the R-loop strongly depended on whether the PQS was in TS or NTS. We propose these variations in the complex structures to have functional implications for Cas9 activity.


Assuntos
Proteína 9 Associada à CRISPR/química , Quadruplex G , Sistemas CRISPR-Cas , Conformação de Ácido Nucleico
16.
Nano Lett ; 21(7): 3295-3301, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33739111

RESUMO

Single-molecule FRET is a versatile tool to study nucleic acids and proteins at the nanometer scale. However, currently, only a couple of FRET pairs can be reliably measured on a single object, which makes it difficult to apply single-molecule FRET for structural analysis of biomolecules. Here, we present an approach that allows for the determination of multiple distances between FRET pairs in a single object. We use programmable, transient binding between short DNA strands to resolve the FRET efficiency of multiple fluorophore pairs. By allowing only a single FRET pair to be formed at a time, we can determine the pair distance with subnanometer precision. The distance between other pairs are determined by sequentially exchanging DNA strands. We name this multiplexing approach FRET X for FRET via DNA eXchange. Our FRET X technology will be a tool for the high-resolution analysis of biomolecules and nanostructures.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Ácidos Nucleicos , DNA/genética , Corantes Fluorescentes , Nanotecnologia
17.
RNA Biol ; 18(11): 1540-1545, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33530834

RESUMO

Transposable elements have both detrimental and beneficial effects on their host genome. Tetrahymena is a unicellular eukaryote that deals with transposable elements in a unique way. It has a separate somatic and germline genome in two nuclei in a single cell. During sexual reproduction, a small RNA directed system compares the germline and somatic genome to identify transposable elements and related sequences. These are subsequently marked by heterochromatin and excised. In this Review, current knowledge of this system and the gaps therein are discussed. Additionally, the possibility to exploit the Tetrahymena machinery for genome editing and its advantages over the widely used CRISPR-Cas9 system will be explored. While the bacterial derived CRISPR-Cas9 has difficulty to access eukaryotic chromatin, Tetrahymena proteins are adept at acting in a chromatin context. Furthermore, Tetrahymena based gene therapy in humans might be a safer alternative to Cas9 because the latter can trigger an immune response.


Assuntos
Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , Edição de Genes , Terapia Genética/métodos , Genoma de Protozoário , Tetrahymena/genética , Animais , Humanos
18.
Nat Struct Mol Biol ; 27(9): 790-801, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661421

RESUMO

Small interfering RNAs (siRNAs) promote RNA degradation in a variety of processes and have important clinical applications. siRNAs direct cleavage of target RNAs by guiding Argonaute2 (AGO2) to its target site. Target site accessibility is critical for AGO2-target interactions, but how target site accessibility is controlled in vivo is poorly understood. Here, we use live-cell single-molecule imaging in human cells to determine rate constants of the AGO2 cleavage cycle in vivo. We find that the rate-limiting step in mRNA cleavage frequently involves unmasking of target sites by translating ribosomes. Target site masking is caused by heterogeneous intramolecular RNA-RNA interactions, which can conceal target sites for many minutes in the absence of translation. Our results uncover how dynamic changes in mRNA structure shape AGO2-target recognition, provide estimates of mRNA folding and unfolding rates in vivo, and provide experimental evidence for the role of mRNA structural dynamics in control of mRNA-protein interactions.


Assuntos
Proteínas Argonautas/metabolismo , RNA Mensageiro/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Conformação de Ácido Nucleico , Clivagem do RNA , Dobramento de RNA , RNA Mensageiro/química , Ribossomos/metabolismo
19.
Nat Commun ; 11(1): 2728, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483114

RESUMO

The Pseudomonas putida phenol-responsive regulator DmpR is a bacterial enhancer binding protein (bEBP) from the AAA+ ATPase family. Even though it was discovered more than two decades ago and has been widely used for aromatic hydrocarbon sensing, the activation mechanism of DmpR has remained elusive. Here, we show that phenol-bound DmpR forms a tetramer composed of two head-to-head dimers in a head-to-tail arrangement. The DmpR-phenol complex exhibits altered conformations within the C-termini of the sensory domains and shows an asymmetric orientation and angle in its coiled-coil linkers. The structural changes within the phenol binding sites and the downstream ATPase domains suggest that the effector binding signal is propagated through the coiled-coil helixes. The tetrameric DmpR-phenol complex interacts with the σ54 subunit of RNA polymerase in presence of an ATP analogue, indicating that DmpR-like bEBPs tetramers utilize a mechanistic mode distinct from that of hexameric AAA+ ATPases to activate σ54-dependent transcription.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Conformação Proteica , Multimerização Proteica , Transativadores/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Fenol/metabolismo , Ligação Proteica , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Homologia de Sequência de Aminoácidos , Transativadores/genética , Transativadores/metabolismo
20.
Angew Chem Int Ed Engl ; 59(24): 9340-9344, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32180306

RESUMO

Supramolecular encapsulation is known to alter chemical properties of guest molecules. We have applied this strategy of molecular encapsulation to temporally control the catalytic activity of a stable copper(I)-carbene catalyst. Encapsulation of the copper(I)-carbene catalyst by the supramolecular host cucurbit[7]uril (CB[7]) resulted in the complete inactivation of a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. The addition of a chemical signal achieved the near instantaneous activation of the catalyst, by releasing the catalyst from the inhibited CB[7] catalyst complex. To broaden the scope of our on-demand CuAAC reaction, we demonstrated the protein labeling of vinculin with the copper(I)-carbene catalyst, to inhibit its activity by encapsulation with CB[7] and to initiate labeling at any moment by adding a specific signal molecule. Ultimately, this strategy allows for temporal control over copper-catalyzed click chemistry, on small molecules as well as protein targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA