Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38399470

RESUMO

Targeted radionuclide therapy (TRT) is an emerging field and has the potential to become a major pillar in effective cancer treatment. Several pharmaceuticals are already in routine use for treating cancer, and there is still a high potential for new compounds for this application. But, a major issue for many radiolabeled low-to-moderate-molecular-weight molecules is their clearance via the kidneys and their subsequent reuptake. High renal accumulation of radioactive compounds may lead to nephrotoxicity, and therefore, the kidneys are often the dose-limiting organs in TRT with these radioligands. Over the years, different strategies have been developed aiming for reduced kidney retention and enhanced therapeutic efficacy of radioligands. In this review, we will give an overview of the efforts and achievements of the used strategies, with focus on the therapeutic potential of low-to-moderate-molecular-weight molecules. Among the strategies discussed here is coadministration of compounds that compete for binding to the endocytic receptors in the proximal tubuli. In addition, the influence of altering the molecular design of radiolabeled ligands on pharmacokinetics is discussed, which includes changes in their physicochemical properties and implementation of cleavable linkers or albumin-binding moieties. Furthermore, we discuss the influence of chelator and radionuclide choice on reabsorption of radioligands by the kidneys.

2.
Mol Pharm ; 20(7): 3519-3528, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37265006

RESUMO

PET imaging of the glucagon-like peptide-1 receptor (GLP-1R) using radiolabeled exendin is a promising imaging method to detect insulinomas. However, high renal accumulation of radiolabeled exendin could hamper the detection of small insulinomas in proximity to the kidneys and limit its use as a radiotherapeutic agent. Here, we report two new exendin analogues for GLP-1R imaging and therapy, designed to reduce renal retention by incorporating a cleavable methionine-isoleucine (Met-Ile) linker. We examined the renal retention and insulinoma targeting properties of these new exendin analogues in a nude mouse model bearing subcutaneous GLP-1R-expressing insulinomas. NOTA or DOTA was conjugated via a methionine-isoleucine linker to the C-terminus of exendin-4 (NOTA-MI-exendin-4 or DOTA-MI-exendin-4). NOTA- and DOTA-exendin-4 without the linker were used as references. The affinity for GLP-1R was determined in a competitive binding assay using GLP-1R transfected cells. Biodistribution of [68Ga]Ga-NOTA-exendin-4, [68Ga]Ga-NOTA-MI-exendin-4, [177Lu]Lu-DOTA-exendin-4, and [177Lu]Lu-DOTA-MI-exendin-4 was determined in INS-1 tumor-bearing BALB/c nude mice, and PET/CT was acquired to visualize renal retention and tumor targeting. For all tracers, dosimetric calculations were performed to determine the kidney self-dose. The affinity for GLP-1R was in the low nanomolar range (<11 nM) for all peptides. In vivo biodistribution revealed a significantly lower kidney uptake of [68Ga]Ga-NOTA-MI-exendin-4 at 4 h post-injection (p.i.) (34.2 ± 4.2 %IA/g), compared with [68Ga]Ga-NOTA-exendin-4 (128 ± 10 %IA/g). Accumulation of [68Ga]Ga-NOTA-MI-exendin-4 in the tumor was 25.0 ± 8.0 %IA/g 4 h p.i., which was similar to that of [68Ga]Ga-NOTA-exendin-4 (24.9 ± 9.3 %IA/g). This resulted in an improved tumor-to-kidney ratio from 0.2 ± 0.0 to 0.8 ± 0.3. PET/CT confirmed the findings in the biodistribution studies. The kidney uptake of [177Lu]Lu-DOTA-MI-exendin-4 was 39.4 ± 6.3 %IA/g at 24 h p.i. and 13.0 ± 2.5 %IA/g at 72 h p.i., which were significantly lower than those for [177Lu]Lu-DOTA-exendin-4 (99.3 ± 9.2 %IA/g 24 h p.i. and 45.8 ± 3.9 %IA/g 72 h p.i.). The uptake in the tumor was 7.8 ± 1.5 and 11.3 ± 2.0 %IA/g 24 h p.i. for [177Lu]Lu-DOTA-MI-exendin-4 and [177Lu]Lu-DOTA-exendin-4, respectively, resulting in improved tumor-to-kidney ratios for [177Lu]Lu-DOTA-MI-exendin-4. The new exendin analogues with a Met-Ile linker showed 2-3-fold reduced renal retention and improved tumor-to-kidney ratios compared with their reference without the Met-Ile linker. Future studies should demonstrate whether [68Ga]Ga-NOTA-MI-exendin-4 results in improved detection of small insulinomas in close proximity to the kidneys with PET/CT. [177Lu]Lu-DOTA-MI-exendin-4 might open a window of opportunity for exendin-based radionuclide therapy.


Assuntos
Insulinoma , Neoplasias Pancreáticas , Camundongos , Animais , Exenatida/química , Insulinoma/diagnóstico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Gálio/química , Camundongos Nus , Distribuição Tecidual , Isoleucina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Rim/metabolismo , Metionina/metabolismo
3.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37242457

RESUMO

The clinical success of radiolabeled somatostatin analogs in the diagnosis and therapy-"theranostics"-of tumors expressing the somatostatin subtype 2 receptor (SST2R) has paved the way for the development of a broader panel of peptide radioligands targeting different human tumors. This approach relies on the overexpression of other receptor-targets in different cancer types. In recent years, a shift in paradigm from internalizing agonists to antagonists has occurred. Thus, SST2R-antagonist radioligands were first shown to accumulate more efficiently in tumor lesions and clear faster from the background in animal models and patients. The switch to receptor antagonists was soon adopted in the field of radiolabeled bombesin (BBN). Unlike the stable cyclic octapeptides used in the case of somatostatin, BBN-like peptides are linear, fast to biodegradable and elicit adverse effects in the body. Thus, the advent of BBN-like antagonists provided an elegant way to obtain effective and safe radiotheranostics. Likewise, the pursuit of gastrin and exendin antagonist-based radioligands is advancing with exciting new outcomes on the horizon. In the present review, we discuss these developments with a focus on clinical results, commenting on challenges and opportunities for personalized treatment of cancer patients by means of state-of-the-art antagonist-based radiopharmaceuticals.

4.
Pharmaceutics ; 15(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36986657

RESUMO

The therapeutic potential of minigastrin (MG) analogs for the treatment of cholecystokinin-2 receptor (CCK2R)-expressing cancers is limited by poor in vivo stability or unfavorable accumulation in non-target tissues. Increased stability against metabolic degradation was achieved by modifying the C-terminal receptor-specific region. This modification led to significantly improved tumor targeting properties. In this study, further N-terminal peptide modifications were investigated. Two novel MG analogs were designed starting from the amino acid sequence of DOTA-MGS5 (DOTA-DGlu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1Nal-NH2). Introduction of a penta-DGlu moiety and replacement of the four N-terminal amino acids by a non-charged hydrophilic linker was investigated. Retained receptor binding was confirmed using two CCK2R-expressing cell lines. The effect on metabolic degradation of the new 177Lu-labeled peptides was studied in human serum in vitro, as well as in BALB/c mice in vivo. The tumor targeting properties of the radiolabeled peptides were assessed using BALB/c nude mice bearing receptor-positive and receptor-negative tumor xenografts. Both novel MG analogs were found to have strong receptor binding, enhanced stability, and high tumor uptake. Replacement of the four N-terminal amino acids by a non-charged hydrophilic linker lowered the absorption in the dose-limiting organs, whereas introduction of the penta-DGlu moiety increased uptake in renal tissue.

5.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982201

RESUMO

Polyisocyanopeptide (PIC) hydrogels are proposed as promising wound dressings. These gels are thermo-sensitive, allow application as a cold liquid, and rely on gelation through body heat. It is supposed that the gel can be easily removed by reversing the gelation and washing it away with a cold irrigation solution. The impact on wound healing of the regular application and removal of PIC dressings is compared to a single application of PIC and the clinically used Tegaderm™ in murine splinted full-thickness wounds for up to 14 days. SPECT/CT analysis of 111In-labelled PIC gels showed that, on average, 58% of the PIC gel could be washed out of the wounds with the employed method, which is, however, heavily influenced by personal technique. Evaluation with photography and (immuno-)histology showed that wounds in which PIC dressings were regularly removed and replaced were smaller at 14 days post-injury but performed on par with the control treatment. Moreover, the encapsulation of PIC in wound tissue was less severe and occurred less often when PIC was regularly refreshed. In addition, no morphological damage related to the removal procedure was observed. Thus, PIC gels are atraumatic and perform similarly to currently employed wound dressing materials, offering possible future benefits for both clinicians and patients.


Assuntos
Hidrogéis , Cicatrização , Humanos , Camundongos , Animais , Bandagens , Álcool de Polivinil , Povidona
6.
Eur J Nucl Med Mol Imaging ; 50(4): 996-1004, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36446951

RESUMO

PURPOSE: Exendin, an analogue of the glucagon-like peptide 1 (GLP1), is an excellent tracer for molecular imaging of pancreatic beta cells and beta cell-derived tumours. The commonly used form, exendin-4, activates the GLP1 receptor and causes internalisation of the peptide-receptor complex. As a consequence, injection of exendin-4 can lead to adverse effects such as nausea, vomiting and hypoglycaemia and thus requires close monitoring during application. By comparison, the antagonist exendin(9-39) does not activate the receptor, but its lack of internalisation has precluded its use as a tracer. Improving the cellular uptake of exendin(9-39) could turn it into a useful alternative tracer with less side-effects than exendin-4. METHODS: We conjugated exendin-4 and exendin(9-39) to the well-known cell-penetrating peptide (CPP) penetratin. We evaluated cell binding and internalisation of the radiolabelled peptides in vitro and their biodistribution in vivo. RESULTS: Exendin-4 showed internalisation irrespective of the presence of the CPP, whereas for exendin(9-39) only the penetratin conjugate internalised. Conjugation to the CPP also enhanced the in vivo tumour uptake and retention of exendin(9-39). CONCLUSION: We demonstrate that penetratin robustly improves internalisation and tumour retention of exendin(9-39), opening new avenues for antagonist-based in vivo imaging of GLP1R.


Assuntos
Peptídeos Penetradores de Células , Insulinoma , Neoplasias Pancreáticas , Humanos , Exenatida/metabolismo , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/metabolismo , Distribuição Tecidual , Insulinoma/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Peçonhas/farmacologia , Peçonhas/química , Peçonhas/metabolismo
8.
Diabetes ; 69(11): 2246-2252, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32843570

RESUMO

Glucagon-like peptide 1 receptor (GLP-1R) imaging with radiolabeled exendin has proven to be a powerful tool to quantify ß-cell mass (BCM) in vivo. As GLP-1R expression is thought to be influenced by glycemic control, we examined the effect of blood glucose (BG) levels on GLP-1R-mediated exendin uptake in both murine and human islets and its implications for BCM quantification. Periods of hyperglycemia significantly reduced exendin uptake in murine and human islets, which was paralleled by a reduction in GLP-1R expression. Detailed mapping of the tracer uptake and insulin and GLP-1R expression conclusively demonstrated that the observed reduction in tracer uptake directly correlates to GLP-1R expression levels. Importantly, the linear correlation between tracer uptake and ß-cell area was maintained in spite of the reduced GLP-1R expression levels. Subsequent normalization of BG levels restored absolute tracer uptake and GLP-1R expression in ß-cells and the observed loss in islet volume was halted. This manuscript emphasizes the potency of nuclear imaging techniques to monitor receptor regulation noninvasively. Our findings have significant implications for clinical practice, indicating that BG levels should be near-normalized for at least 3 weeks prior to GLP-1R agonist treatment or quantitative radiolabeled exendin imaging for BCM analysis.


Assuntos
Glicemia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucose/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Monitorização Fisiológica , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Humanos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos SCID , Peptídeos/metabolismo
9.
Theranostics ; 10(1): 398-410, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903128

RESUMO

Non-invasive imaging of ß-cells represents a desirable preclinical and clinical tool to monitor the change of ß-cell mass and the loss of function during pre-diabetic stages. Although it is widely accepted that manganese (Mn) ions are actively gated by voltage-dependent calcium channels (VDCC) in response to glucose metabolism, little is known on its specificity in vivo for quantification of islet ß-cell function using Mn and magnetic resonance imaging (MRI). On the other hand, glucagon-like-peptide-1 receptor (GLP-1R) represents a validated target for the estimation of ß-cell mass using radiolabeled exendin-4 (Ex4) and positron emission tomography (PET). However, a multiparametric imaging workflow revealing ß-cell mass and function quantitatively is still missing. Methods: We developed a simultaneous PET/MRI protocol to comprehensively quantify in vivo changes in ß-cell mass and function by targeting, respectively, GLP-1R and VDCC coupled with insulin secretion. Differences in the spatial distribution of Mn and radiolabeled Ex4 were monitored overtime in native and transgenic pancreata, characterized by spontaneous pancreatic neuroendocrine tumor development. Follow-up with mass spectrometry imaging (MSI) and autoradiography allowed the ex vivo validation of the specificity of Mn and PET tracer uptake and the detection of endogenous biometals, such as calcium and zinc, throughout the endocrine and exocrine pancreas. Results: Our in vivo data based on a volumetric PET/MRI readout for native pancreata and insulinomas connects uptake of Mn measured at early imaging time points to high non-specific binding by the exocrine tissue, while specific retention was only found 24 h post injection. These results are supported by cross-validation of the spatial distribution of exogenous 55Mn and endogenous 44Ca and 64Zn as well with the specific internalization of the radiolabeled peptide targeting GLP-1R. Conclusion: Simultaneous PET/MR imaging of the pancreas enabled the comprehensive in vivo quantification of ß-cell function and mass using Mn and radiolabeled Ex4. Most important, our data revealed that only late time-point measurements reflect the Mn uptake in the islet ß-cells, while early time points detect non-specific accumulation of Mn in the exocrine pancreas.


Assuntos
Células Secretoras de Insulina , Imageamento por Ressonância Magnética , Pâncreas , Neoplasias Pancreáticas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Animais , Canais de Cálcio/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/ultraestrutura , Manganês/química , Camundongos , Camundongos Transgênicos , Pâncreas/diagnóstico por imagem , Pâncreas/patologia , Compostos Radiofarmacêuticos/química
10.
Mol Pharm ; 16(9): 4024-4030, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31345042

RESUMO

OBJECTIVE: Targeting the glucagon-like peptide-1 receptor with radiolabeled exendin is a very promising method to noninvasively determine the ß cell mass in the pancreas, which is needed to unravel the pathophysiology of type 1 and type 2 diabetes. The present study aimed to explore the effects of both hyperglycemia and insulitis on the uptake of exendin in a spontaneous type 1 diabetes mouse model, nonobese diabetic (NOD) mice. METHODS: NOD mice (n = 75, 7-21 weeks old) were injected intravenously with [111In]In-DTPA-exendin-3, and single-photon emission computed tomography (SPECT) images were acquired 1 h pi. The pancreatic accumulation of [111In]In-DTPA-exendin-3 was quantified in vivo using SPECT and by ex vivo counting and correlated to the ß cell mass (BCM). The influence of insulitis and hyperglycemia on the exendin uptake was assessed. RESULTS: The pancreas could be visualized longitudinally using SPECT. A linear correlation was found between the BCM (%) and pancreatic uptake (%ID/g) as measured by ex vivo counting (Pearson r = 0.64, p < 0.001), which was not affected by either insulitis (Pearson r = 0.66, p = 0.83) or hyperglycemia (Pearson r = 0.57, p = 0.51). Biodistribution and ex vivo autoradiography revealed remaining [111In]In-DTPA-exendin-3 uptake in the pancreas despite total ablation of BCM. CONCLUSIONS: Despite hyperglycemia and severe insulitis, we have found a good correlation between BCM and pancreatic exendin uptake, even in a suboptimal model with relatively high background activity.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Peptídeos/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Autorradiografia , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Radioisótopos de Índio/administração & dosagem , Radioisótopos de Índio/química , Radioisótopos de Índio/metabolismo , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos NOD , Ácido Pentético/administração & dosagem , Ácido Pentético/química , Ácido Pentético/metabolismo , Peptídeos/administração & dosagem , Peptídeos/química , Compostos Radiofarmacêuticos/metabolismo , Distribuição Tecidual
11.
Biomater Sci ; 7(7): 3041-3050, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31115398

RESUMO

Wounds often result in scarring, prolonged morbidity, and loss of function. New interactive and modifiable hydrogel wound dressings are being developed for these injuries. Polyisocyanopeptide (PIC) gel is a promising thermosensitive hydrogel having several characteristics that can facilitate wound repair, including ease of application/removal and strain-stiffening properties that mimic extracellular matrix components. However, it is unknown whether the PIC gel remains in the wound for a clinically relevant time period. Therefore, PIC polymers were functionalized with a DTPA group allowing labelling with Indium-111 (111In). Following application of this radiolabelled gel to splinted and non-splinted murine full-thickness skin wounds the signal was monitored using SPECT/CT imaging for 7 days. The SPECT signal from the PIC gel was highly stable and covered the complete wound area. Non-bound 111In-EDTA was rapidly cleared via the kidneys to the urine. The impact of PIC gels on wound repair was further studied visually and histologically. Radiolabelled PIC gel was observed to move both over and under the skin, while histological analysis demonstrated that part of the gel became encapsulated within the wound repair tissue, but did not delay wound closure or otherwise impair wound healing. This work illustrates for the first time the use of 111In-labelled PIC gels for diagnostic and monitoring purposes and describes the use of PIC in the (non-)splinted murine skin wound model. It was found that PIC gels remained in splinted and non-splinted full-thickness skin wounds during wound repair. This warrants the continuation of developing the PIC gel into a clinically advanced wound dressing.


Assuntos
Bandagens , Hidrogéis/química , Hidrogéis/farmacologia , Radioisótopos de Índio/química , Peptídeos/química , Cicatrização/efeitos dos fármacos , Animais , Hidrogéis/farmacocinética , Marcação por Isótopo , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Tecidual
12.
J Labelled Comp Radiopharm ; 62(10): 656-672, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31070270

RESUMO

Insulinomas, neuroendocrine tumors arising from pancreatic beta cells, often show overexpression of the glucagon-like peptide-1 receptor. Therefore, imaging with glucagon-like peptide analog exendin-4 can be used for diagnosis and preoperative localization. This review presents an overview of the development and clinical implementation of exendin-based tracers for nuclear imaging, and the potential use of exendin-4 based tracers for optical imaging and therapeutic applications such as peptide receptor radionuclide therapy or targeted photodynamic therapy.


Assuntos
Diagnóstico por Imagem/métodos , Exenatida/química , Exenatida/uso terapêutico , Insulinoma/diagnóstico por imagem , Insulinoma/terapia , Animais , Humanos , Insulinoma/tratamento farmacológico , Fotoquimioterapia
13.
Molecules ; 23(9)2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134599

RESUMO

Non-invasive imaging and quantification of human beta cell mass remains a major challenge. We performed pre-clinical in vivo validation of a peptide previously discovered by our group, namely, P88 that targets a beta cell specific biomarker, FXYD2γa. We conjugated P88 with DOTA and then complexed it with GdCl3 to obtain the MRI (magnetic resonance imaging) contrast agent (CA) Gd-DOTA-P88. A scrambled peptide was used as a negative control CA, namely Gd-DOTA-Scramble. The CAs were injected in immunodeficient mice implanted with EndoC-ßH1 cells, a human beta cell line that expresses FXYD2γa similarly to primary human beta cells. The xenograft-bearing mice were analyzed by MRI. At the end, the mice were euthanized and the CA biodistribution was evaluated on the excised tissues by measuring the Gd concentration with inductively coupled plasma mass spectrometry (ICP-MS). The MRI and biodistribution studies indicated that Gd-DOTA-P88 accumulates in EndoC-ßH1 xenografts above the level observed in the background tissue, and that its uptake is significantly higher than that observed for Gd-DOTA-Scramble. In addition, the Gd-DOTA-P88 showed good xenograft-to-muscle and xenograft-to-liver uptake ratios, two potential sites of human islets transplantation. The CA shows good potential for future use to non-invasively image implanted human beta cells.


Assuntos
Meios de Contraste , Compostos Heterocíclicos , Células Secretoras de Insulina/metabolismo , Imageamento por Ressonância Magnética , Imagem Molecular , Compostos Organometálicos , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Biomarcadores , Células CHO , Meios de Contraste/química , Cricetulus , Expressão Gênica , Compostos Heterocíclicos/química , Xenoenxertos , Humanos , Células Secretoras de Insulina/transplante , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Imagem Molecular/métodos , Compostos Organometálicos/química , ATPase Trocadora de Sódio-Potássio/genética
14.
Diabetes ; 67(10): 2012-2018, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30045920

RESUMO

The changes in ß-cell mass (BCM) during the development and progression of diabetes could potentially be measured by radionuclide imaging using radiolabeled exendin. In this study, we investigated the potential of 111In-diethylenetriaminepentaacetic acid-exendin-3 (111In-exendin) in a rat model that closely mimics the development of type 1 diabetes (T1D) in humans: BioBreeding diabetes-prone (BBDP) rats. BBDP rats of 4-18 weeks of age were injected intravenously with 111In-exendin, and single-photon emission computed tomography (SPECT) images were acquired. The accumulation of the radiotracer was measured as well as the BCM and grade of insulitis by histology. 111In-exendin accumulated specifically in the islets, resulting in a linear correlation with the BCM (%) (Pearson r = 0.89, P < 0.0001, and r = 0.64 for SPECT). Insulitis did not have an influence on this correlation. These results indicate that 111In-exendin is a promising tracer to determine the BCM during the development of T1D, irrespective of the degree of insulitis.


Assuntos
Radioisótopos de Índio/análise , Células Secretoras de Insulina/metabolismo , Peptídeos/análise , Animais , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Humanos , Ratos , Tomografia Computadorizada de Emissão de Fóton Único
15.
Sci Rep ; 8(1): 2948, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440684

RESUMO

Somatostatin receptor targeting is considered the standard nuclear medicine technique for visualization of neuroendocrine tumors (NET). Since not all NETs over-express somatostatin receptors, the search for novel targets, visualizing these NETs, is ongoing. Many NETs, expressing low somatostatin receptor levels, express glucose-dependent insulinotropic polypeptide (GIP) receptors (GIPR). Here, we evaluated the performance of [Lys37(DTPA)]N-acetyl-GIP1-42, a newly synthesized GIP analogue to investigate whether NET imaging via GIPR targeting is feasible. Therefore, [Lys37(DTPA)]N-acetyl-GIP1-42 was radiolabeled with 111In with specific activity up to 1.2 TBq/µmol and both in vitro and in vivo receptor targeting properties were examined. In vitro, [Lys37(111In-DTPA)]N-acetyl-GIP1-42 showed receptor-mediated binding to BHK-GIPR positive cells, NES2Y cells and isolated islets. In vivo, both NES2Y and GIPR-transfected BHK tumors were visualized on SPECT/CT. Furthermore, co-administration of an excess unlabeled GIP1-42 lowered tracer uptake from 0.7 ± 0.2%ID/g to 0.6 ± 0.01%ID/g (p = 0.78) in NES2Y tumors and significantly lowered tracer uptake from 3.3 ± 0.8 to 0.8 ± 0.2%ID/g (p = 0.0001) in GIPR-transfected BHK tumors. In conclusion, [Lys37(111In-DTPA)]N-acetyl-GIP1-42 shows receptor-mediated binding in various models. Furthermore, both GIPR-transfected BHK tumors and NES2Y tumors were visible on SPECT/CT using this tracer. Therefore, [Lys37(111In-DTPA)]N-acetyl-GIP1-42 SPECT seems promising for visualization of somatostatin receptor negative NETs.


Assuntos
Polipeptídeo Inibidor Gástrico/química , Radioisótopos de Índio/química , Tumores Neuroendócrinos/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Feminino , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacocinética , Humanos , Marcação por Isótopo , Cinética , Camundongos , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Transporte Proteico , Traçadores Radioativos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Distribuição Tecidual
16.
Mol Pharm ; 15(2): 486-494, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29226686

RESUMO

Glucagon-like peptide-1 receptor (GLP-1R) targeting using radiolabeled exendin is a promising approach to noninvasively visualize and determine beta cell mass (BCM), which could help to unravel the pathophysiology of diabetes. However, saturation of the GLP-1R on beta cells occurs at low peptide doses, since the number of receptors expressed under physiological conditions is low. Therefore, tracers with high specific activities are required to sensitively image small variations in BCM. Here, we describe a novel exendin-3-based radiotracer with multiple chelators and determine its potential for in vivo beta cell imaging. Exendin-3 was modified by adding six lysine residues C-terminally conjugated with one, two, or six DTPA moieties. All compounds were labeled with 111In and their GLP-1R affinity was determined in vitro using GLP-1R expressing cells. The in vivo behavior of the 111In-labeled tracers was examined in BALB/c nude mice with a subcutaneous GLP-1R expressing tumor (INS-1). Brown Norway rats were used for SPECT visualization of the pancreatic BCM. Addition of six lysine and six DTPA residues (hexendin(40-45)) resulted in a 7-fold increase in specific activity (from 0.73 GBq/nmol to 5.54 GBq/nmol). IC50 values varied between 5.2 and 69.5 nM. All compounds with two or six lysine and DTPA residues had a significantly lower receptor affinity than [Lys40(DTPA)]exendin-3 (4.4 nM, p < 0.05). The biodistribution in mice revealed no significant decrease in pancreatic uptake after addition of six lysine and DTPA molecules. Hexendin(40-45) showed a 6-fold increase in absolute 111In uptake in the pancreas of Brown Norway rats compared to [Lys40(DTPA)]exendin-3 (182.7 ± 42.3 kBq vs 28.8 ± 6.0 kBq, p < 0.001). Visualization of the pancreas on SPECT was improved using hexendin(40-45), due to the higher count rate, achieved at the same peptide dose. In conclusion, hexendin(40-45) showed an improved visualization of the pancreas with SPECT. This tracer holds promise to sensitively and specifically detect small variations in BCM.


Assuntos
Diabetes Mellitus/diagnóstico por imagem , Microscopia Intravital/métodos , Peptídeos/química , Compostos Radiofarmacêuticos/química , Animais , Linhagem Celular Tumoral , Quelantes/química , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Insulina , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pâncreas/diagnóstico por imagem , Pâncreas/metabolismo , Ácido Pentético/química , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único/métodos
17.
Sci Rep ; 7(1): 7232, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775287

RESUMO

Pancreatic islet transplantation is a promising therapy for patients with type 1 diabetes. However, the duration of long-term graft survival is limited due to inflammatory as well as non-inflammatory processes and routine clinical tests are not suitable to monitor islet survival. 111In-exendin-SPECT (single photon emission computed tomography) is a promising method to non-invasively image islets after transplantation and has the potential to help improve the clinical outcome. Whether 111In-exendin-SPECT allows detecting small differences in beta-cell mass (BCM) and measuring the actual volume of islets that were successfully engrafted has yet to be demonstrated. Here, we evaluated the performance of 111In-exendin-SPECT using an intramuscular islet transplantation model in C3H mice. In vivo imaging of animals transplanted with 50, 100, 200, 400 and 800 islets revealed an excellent linear correlation between SPECT quantification of 111In-exendin uptake and insulin-positive area of islet transplants, demonstrating that 111In-exendin-SPECT specifically and accurately measures BCM. The high sensitivity of the method allowed measuring small differences in graft volumes, including grafts that contained less than 50 islets. The presented method is reliable, convenient and holds great potential for non-invasive monitoring of BCM after islet transplantation in humans.


Assuntos
Radioisótopos de Índio , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Imagem Molecular , Peptídeos/metabolismo , Animais , Autorradiografia , Feminino , Imuno-Histoquímica , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Camundongos , Imagem Molecular/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos
18.
Sci Rep ; 7(1): 1751, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28496188

RESUMO

There is an ongoing search for new tracers to optimize imaging of beta cell-derived tumors (insulinomas). The PAC1 receptor, expressed by insulinomas, can be used for targeting of these tumors. Here, we investigated whether radiolabeled maxadilan could be used for insulinoma imaging. Maxadilan was C- or N-terminally conjugated with DTPA (termed maxadilan-DPTA or DTPA-maxadilan respectively). BALB/c nude mice bearing subcutaneous INS-1 tumors were injected with either In-111-labeled maxadilan-DTPA or In-111-DTPA-maxadilan. Biodistribution studies were carried out at 1, 2 and 4 hours after injection and SPECT/CT imaging 1 and 4 hours after injection of maxadilan-DTPA-111In. Radiolabeling of maxadilan-DTPA (680 MBq/nmol) was more efficient than of DTPA-maxadilan (55 MBq/nmol). Conjugation with DTPA slightly reduced receptor binding affinity in vitro: IC50 values were 3.2, 21.0 and 21.0 nM for maxadilan, natIn-DTPA-maxadilan and maxadilan-DTPA-natIn respectively. Upon i.v. injection maxadilan-DTPA-111In accumulated specifically in INS-1 tumors (7.30 ± 1.87%ID/g) and in the pancreas (3.82 ± 0.22%ID/g). INS-1 tumors were clearly visualized by small animal SPECT/CT. In conclusion, this study showed that the high affinity of maxadilan to the PAC1 receptor was maintained after DTPA conjugation. Furthermore, radiolabeled maxadilan-DTPA accumulated specifically in INS-1 tumors and, therefore, may qualify as a useful tracer to image insulinomas.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Proteínas de Insetos/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Sequência de Aminoácidos , Animais , Ligação Competitiva , Linhagem Celular Tumoral , Intervalos de Confiança , Humanos , Radioisótopos de Índio/química , Concentração Inibidora 50 , Proteínas de Insetos/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ácido Pentético/química , Compostos Radiofarmacêuticos/química , Ratos , Soro/metabolismo , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
19.
Sci Rep ; 7: 39800, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067253

RESUMO

Radiolabeled exendin is used for non-invasive quantification of beta cells in the islets of Langerhans in vivo. High accumulation of radiolabeled exendin in the islets raised concerns about possible radiation-induced damage to these islets in man. In this work, islet absorbed doses resulting from exendin-imaging were calculated by combining whole organ dosimetry with small scale dosimetry for the islets. Our model contains the tissues with high accumulation of radiolabeled exendin: kidneys, pancreas and islets. As input for the model, data from a clinical study (radiolabeled exendin distribution in the human body) and from a preclinical study with Biobreeding Diabetes Prone (BBDP) rats (islet-to-exocrine uptake ratio, beta cell mass) were used. We simulated 111In-exendin and 68Ga-exendin absorbed doses in patients with differences in gender, islet size, beta cell mass and radiopharmaceutical uptake in the kidneys. In all simulated cases the islet absorbed dose was small, maximum 1.38 mGy for 68Ga and 66.0 mGy for 111In. The two sources mainly contributing to the islet absorbed dose are the kidneys (33-61%) and the islet self-dose (7.5-57%). In conclusion, all islet absorbed doses are low (<70 mGy), so even repeated imaging will hardly increase the risk on diabetes.


Assuntos
Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Rim/metabolismo , Lesões por Radiação/diagnóstico , Radiometria/métodos , Adulto , Animais , Contagem de Células , Diabetes Mellitus/etiologia , Diabetes Mellitus/genética , Modelos Animais de Doenças , Feminino , Radioisótopos de Gálio/química , Radioisótopos de Gálio/metabolismo , Humanos , Radioisótopos de Índio/química , Radioisótopos de Índio/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos da radiação , Peptídeos e Proteínas de Sinalização Intercelular , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos da radiação , Rim/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Peptídeos/metabolismo , Radiação , Doses de Radiação , Ratos , Ratos Mutantes , Adulto Jovem
20.
Diabetes Obes Metab ; 19(4): 604-608, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27987245

RESUMO

A non-invasive imaging method to monitor islet grafts could provide novel and improved insight into the fate of transplanted islets and, potentially, monitor the effect of therapeutic interventions. Therefore, such an imaging method could help improve long-term transplantation outcome. Here, we investigated the use of [ 123 I]IBZM for insulin positive graft volume quantification and longitudinal graft monitoring. SPECT images were acquired 6 weeks after islet transplantation in the calf muscle of rats. For longitudinal graft analysis, rats were monitored by SPECT for 10 weeks. After animals were euthanized, graft containing muscles were dissected for ex vivo analysis and insulin-positive graft volume determination. Six weeks after transplantation, a clear signal was observed in all grafts by SPECT imaging. Moreover, the intensity of the SPECT signal correlated linearly with insulin-positive graft volume, as determined histologically. Longitudinal graft follow-up showed a clear SPECT signal of the transplant from 3 until 10 weeks after transplantation. In this study, we demonstrate for the first time the successful application of a radiotracer, [ 123 I]IBZM, for non-invasive, in vivo graft volume quantification and longitudinal graft monitoring.


Assuntos
Benzamidas , Meios de Contraste , Ilhotas Pancreáticas/diagnóstico por imagem , Extremidade Inferior/diagnóstico por imagem , Pirrolidinas , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Transplante das Ilhotas Pancreáticas , Período Pós-Operatório , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA