Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1150285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37114063

RESUMO

Introduction: Fragmented genomic DNA is constitutively released from dying cells into interstitial fluid in healthy tissue. In cancer, this so-called 'cell-free' DNA (cfDNA) released from dying malignant cells encodes cancer-associated mutations. Thus, minimally invasive sampling of cfDNA in blood plasma can be used to diagnose, characterise and longitudinally monitor solid tumours at remote sites in the body. ~5% of carriers of Human T cell leukaemia virus type 1 (HTLV-1) develop Adult T cell leukaemia/lymphoma (ATL), and a similar percentage develop an inflammatory CNS disease, HTLV-1 associated myelopathy (HAM). In both ATL and HAM, high frequencies of HTLV-1 infected cells are present in the affected tissue: each carrying an integrated DNA copy of the provirus. We hypothesised that turnover of infected cells results in the release of HTLV-1 proviruses in cfDNA, and that analysis of cfDNA from infected cells in HTLV-1 carriers might contain clinically useful information pertaining to inaccessible sites in the body- e.g. for early detection of primary or relapsing localised lymphoma type ATL. To evaluate the feasibility of this approach, we tested for HTLV-1 proviruses in blood plasma cfDNA. Methods: CfDNA (from blood plasma) and genomic DNA (gDNA, from peripheral blood mononuclear cells, PBMC) was isolated from blood from 6 uninfected controls, 24 asymptomatic carriers (AC), 21 patients with HAM and 25 patients with ATL. Proviral (HTLV-1 Tax) and human genomic DNA (the beta globin gene, HBB) targets were quantified by qPCR using primer pairs optimised for fragmented DNA. Results: Pure, high quality cfDNA was successfully extracted from blood plasma of all study participants. When compared with uninfected controls, HTLV-1 carriers had higher concentrations of cfDNA circulating in their blood plasma. Patients with ATL who were not in remission had the highest levels of blood plasma cfDNA in any group studied. HTLV-1 proviral DNA was detected in 60/70 samples obtained from HTLV-1 carriers. The proviral load (percentage of cells carrying proviruses) was approximately tenfold lower in plasma cfDNA than in PBMC genomic DNA, and there was a strong correlation between the proviral load in cfDNA and PBMC genomic DNA in HTLV-1 carriers that did not have ATL. cfDNA samples in which proviruses were undetectable also had very low proviral load in PBMC genomic DNA. Finally, detection of proviruses in cfDNA of patients with ATL was predictive of clinical status: patients with evolving disease had higher than expected total amount of proviruses detectable in plasma cfDNA. Discussion: We demonstrated that (1) HTLV-1 infection is associated with increased levels of blood plasma cfDNA, (2) proviral DNA is released into blood plasma cfDNA in HTLV-1 carriers and (3) proviral burden in cfDNA correlates with clinical status, raising the possibility of developing assays of cfDNA for clinical use in HTLV-1 carriers.


Assuntos
Ácidos Nucleicos Livres , Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Paraparesia Espástica Tropical , Adulto , Humanos , Vírus Linfotrópico T Tipo 1 Humano/genética , Leucemia-Linfoma de Células T do Adulto/diagnóstico , Leucemia-Linfoma de Células T do Adulto/genética , Provírus/genética , Leucócitos Mononucleares , DNA Viral , Recidiva Local de Neoplasia , Biópsia Líquida , Ácidos Nucleicos Livres/genética
2.
Front Immunol ; 13: 980514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032174

RESUMO

Previous attempts to develop a vaccine against bovine leukemia virus (BLV) have not been successful because of inadequate or short-lived stimulation of all immunity components. In this study, we designed an approach based on an attenuated BLV provirus by deleting genes dispensable for infectivity but required for efficient replication. The ability of the vaccine to protect from natural BLV infection was investigated in the context of dairy productive conditions in an endemic region. The attenuated vaccine was tested in a farm in which the prevalence rose from 16.7% in young cattle at the beginning of the study to more than 90% in adult individuals. Sterilizing immunity was obtained in 28 out of 29 vaccinated heifers over a period of 48 months, demonstrating the effectiveness of the vaccine. As indicated by the antiviral antibody titers, the humoral response was slightly reduced compared to wild-type infection. After initial post-vaccination bursts, the proviral loads of the attenuated vaccine remained most frequently undetectable. During the first dairy cycle, proviral DNA was not detected by nested-PCR in milk samples from vaccinated cows. During the second dairy cycle, provirus was sporadically detected in milk of two vaccinated cows. Forty-two calves born from vaccinated cows were negative for proviral DNA but had antiviral antibodies in their peripheral blood. The attenuated strain was not transmitted to sentinels, further supporting the safety of the vaccine. Altogether, these data thus demonstrate that the vaccine against BLV is safe and effective in herd conditions characterized by a very high incidence. This cost-effective approach will thus decrease the prevalence of BLV without modification of production practices. After facing a series of challenges pertaining to effectiveness and biosafety, the vaccine is now available for further large-scale delivery. The different challenges and hurdles that were bypassed may be informative for the development of a vaccine against HTLV-1.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Antivirais , Bovinos , Feminino , Provírus , Vacinas Atenuadas
3.
Pathogens ; 10(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672613

RESUMO

Bovine Leukemia Virus (BLV) is the etiological agent of enzootic bovine leucosis (EBL), a lymphoproliferative disease of the bovine species. In BLV-infected cells, the long terminal repeat (LTR), the viral Tax protein and viral miRNAs promote viral and cell proliferation as well as tumorigenesis. Although their respective roles are decisive in BLV biology, little is known about the genetic sequence variation of these parts of the BLV genome and their impact on disease outcome. Therefore, the objective of this study was to assess the relationship between disease progression and sequence variation of the BLV Tax, miRNA and LTR regions in infected animals displaying either low or high levels of persistent lymphocytosis (PL). A statistically significant association was observed between the A(+187)C polymorphism in the downstream activator sequence (DAS) region in LTR (p-value = 0.00737) and high lymphocytosis. Our study also showed that the mutation A(-4)G in the CAP site occurred in 70% of isolates with low PL and was not found in the high PL group. Conversely, the mutations G(-133)A/C in CRE2 (46.7%), C(+160)T in DAS (30%) and A(310)del in BLV-mir-B4-5p, A(357)G in BLV-mir-B4-3p, A(462)G in BLV-mir-B5-5p, and GA(497-498)AG in BLV-mir-B5-3p (26.5%) were often seen in isolates with high PL and did not occur in the low PL group. In conclusion, we found several significant polymorphisms among BLV genomic sequences in Russia that would explain a progression towards higher or lower lymphoproliferation. The data presented in this article enabled the classification between two different genotypes; however, clear association between genotypes and the PL development was not found.

4.
Retrovirology ; 16(1): 26, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31590667

RESUMO

Vaccination against retroviruses is a challenge because of their ability to stably integrate into the host genome, undergo long-term latency in a proportion of infected cells and thereby escape immune response. Since clearance of the virus is almost impossible once infection is established, the primary goal is to achieve sterilizing immunity. Besides efficacy, safety is the major issue since vaccination has been associated with increased infection or reversion to pathogenicity. In this review, we discuss the different issues that we faced during the development of an efficient vaccine against bovine leukemia virus (BLV). We summarize the historical failures of inactivated vaccines, the efficacy and safety of a live-attenuated vaccine and the economical constraints of further industrial development.


Assuntos
Leucose Enzoótica Bovina/prevenção & controle , Vírus da Leucemia Bovina/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Bovinos , Vacinação/veterinária , Vacinas Atenuadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA