Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193630

RESUMO

In the realm of nitrogen-fused heterocycles, imidazo[1,5-a]indole and its derivatives are recognized as privileged structural patterns in various pharmaceutical drugs and biologically active natural products, emphasizing their significance. This review comprehensively explores the synthetic strategies for constructing imidazo[1,5-a]indole scaffolds, with a particular focus on transition metal-catalyzed methodologies. The primary highlighted method is [4 + 1] annulation, along with other notable approaches such as C-H activation/cyclization, enantioselective C-H annulation, intramolecular hydroamination, and double cyclization processes.

2.
J Mol Model ; 30(4): 103, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478122

RESUMO

CONTEXT: Monoamine oxidase B (MAO-B), an enzyme of significant relevance in the realm of neurodegenerative disorders, has garnered considerable attention as a potential target for therapeutic intervention. Natural compounds known as chalcones have shown potential as MAO-B inhibitors. In this particular study, we employed a multimodal computational method to evaluate the inhibitory effects of chalcones on MAO-B. METHODS: Molecular docking methods were used to study and assess the complicated binding interactions that occur between chalcones and MAO-B. This extensive analysis provided a valuable and deep understanding of possible binding methods as well as the key residues implicated in the inhibition process. Furthermore, the ADME investigation gave valuable insights into the pharmacokinetic properties of chalcones. This allowed them to be assessed in terms of drug-like attributes. The use of MD simulations has benefited in the research of ligand-protein interactions' dynamic behaviour and temporal stability. MM-PBSA calculations were also done to estimate the binding free energies and acquire a better knowledge and understanding of the binding affinity between chalcones and MAO-B. Our thorough method gives a thorough knowledge of chalcones' potential as MAO-B inhibitors, which will be useful for future experimental validation and drug development efforts in the context of neurodegenerative illnesses.


Assuntos
Chalconas , Monoaminoxidase , Monoaminoxidase/química , Monoaminoxidase/metabolismo , Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Chalconas/farmacologia , Chalconas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA