Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Environ Manage ; 354: 120414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412730

RESUMO

Inadequate landfill management poses risks to the environment and human health, necessitating action. Poorly designed and operated landfills release harmful gases, contaminate water, and deplete resources. Aligning landfill management with the Sustainable Development Goals (SDGs) reveals its crucial role in achieving various targets. Urgent transformation of landfill practices is necessary to address challenges like climate change, carbon neutrality, food security, and resource recovery. The scientific community recognizes landfill management's impact on climate change, evidenced by in over 191 published articles (1998-2023). This article presents emerging solutions for sustainable landfill management, including physico-chemical, oxidation, and biological treatments. Each technology is evaluated for practical applications. The article emphasizes landfill management's global significance in pursuing carbon neutrality, prioritizing resource recovery over end-of-pipe treatments. It is important to note that minimizing water, chemical, and energy inputs in nutrient recovery is crucial for achieving carbon neutrality by 2050. Water reuse, energy recovery, and material selection during manufacturing are vital. The potential of water technologies for recovering macro-nutrients from landfill leachate is explored, considering feasibility factors. Integrated waste management approaches, such as recycling and composting, reduce waste and minimize environmental impact. It is conclusively evident that the water technologies not only facilitate the purification of leachate but also enable the recovery of valuable substances such as ammonium, heavy metals, nutrients, and salts. This recovery process holds economic benefits, while the conversion of CH4 and hydrogen into bioenergy and power generation through microbial fuel cells further enhances its potential. Future research should focus on sustainable and cost-effective treatment technologies for landfill leachate. Improving landfill management can mitigate the adverse environmental and health effects of inadequate waste disposal.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/química , Carbono , Instalações de Eliminação de Resíduos , Água , Resíduos Sólidos
2.
Environ Res ; 238(Pt 1): 117114, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716387

RESUMO

Water pollution poses significant threats to both ecosystems and human health. Mitigating this issue requires effective treatment of domestic wastewater to convert waste into bio-fertilizers and gas. Neglecting liquid waste treatment carries severe consequences for health and the environment. This review focuses on intelligent technologies for water and wastewater treatment, targeting waterborne diseases. It covers pollution prevention and purification methods, including hydrotherapy, membrane filtration, mechanical filters, reverse osmosis, ion exchange, and copper-zinc cleaning. The article also highlights domestic purification, field techniques, heavy metal removal, and emerging technologies like nanochips, graphene, nanofiltration, atmospheric water generation, and wastewater treatment plants (WWTPs)-based cleaning. Emphasizing water cleaning's significance for ecosystem protection and human health, the review discusses pollution challenges and explores the integration of wastewater treatment, coagulant processes, and nanoparticle utilization in management. It advocates collaborative efforts and innovative research for freshwater preservation and pollution mitigation. Innovative biological systems, combined with filtration, disinfection, and membranes, can elevate recovery rates by up to 90%, surpassing individual primary (<10%) or biological methods (≤50%). Advanced treatment methods can achieve up to 95% water recovery, exceeding UN goals for clean water and sanitation (Goal 6). This progress aligns with climate action objectives and safeguards vital water-rich habitats (Goal 13). The future holds promise with advanced purification techniques enhancing water quality and availability, underscoring the need for responsible water conservation and management for a sustainable future.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Ecossistema , Osmose , Filtração/métodos , Purificação da Água/métodos , Poluentes Químicos da Água/análise
3.
Environ Res ; 238(Pt 1): 117164, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722579

RESUMO

Arsenic (As) contamination poses a significant threat to human health, ecosystems, and agriculture, with levels ranging from 12 to 75% attributed to mine waste and stream sediments. This naturally element is abundant in Earth's crust and gets released into the environment through mining and rock processing, causing ≈363 million people to depend on As-contaminated groundwater. To combat this issue, introducing a sustainable hydrochar system has achieved a remarkable removal efficiency of over 92% for arsenic through adsorption. This comprehensive review presents an overview of As contamination in the environment, with a specific focus on its impact on drinking water and wastewater. It delves into the far-reaching effects of As on human health, ecosystems, aquatic systems, and agriculture, while also exploring the effectiveness of existing As treatment systems. Additionally, the study examines the potential of hydrochar as an efficient adsorbent for As removal from water/wastewater, along with other relevant adsorbents and biomass-based preparations of hydrochar. Notably, the fusion of hydrochar with nanoparticle-centric approaches presents a highly promising and environmentally friendly solution for achieving the removal of As from wastewater, exceeding >99% efficiency. This innovative approach holds immense potential for advancing the realms of green chemistry and environmental restoration. Various challenges associated with As contamination and treatment are highlighted, and proposed solutions are discussed. The review emphasizes the urgent need to advance treatment technologies, improve monitoring methods, and enhance regulatory frameworks. Looking outlook, the article underscores the importance of fostering research efforts, raising public awareness, and fostering interdisciplinary collaboration to address this critical environmental issue. Such efforts are vital for UN Sustainable Development Goals, especially clean water and sanitation (Goal 6) and climate action (Goal 13), crucial for global sustainability.


Assuntos
Arsênio , Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Arsênio/análise , Ecossistema , Água , Poluentes Químicos da Água/análise , Adsorção , Purificação da Água/métodos
4.
Nanomaterials (Basel) ; 13(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36770535

RESUMO

The human nature of curiosity, wonder, and ingenuity date back to the age of humankind. In parallel with our history of civilization, interest in scientific approaches to unravel mechanisms underlying natural phenomena has been developing. Recent years have witnessed unprecedented growth in research in the area of pharmaceuticals and medicine. The optimism that nanotechnology (NT) applied to medicine and drugs is taking serious steps to bring about significant advances in diagnosing, treating, and preventing disease-a shift from fantasy to reality. The growing interest in the future medical applications of NT leads to the emergence of a new field for nanomaterials (NMs) and biomedicine. In recent years, NMs have emerged as essential game players in modern medicine, with clinical applications ranging from contrast agents in imaging to carriers for drug and gene delivery into tumors. Indeed, there are instances where nanoparticles (NPs) enable analyses and therapies that cannot be performed otherwise. However, NPs also bring unique environmental and societal challenges, particularly concerning toxicity. Thus, clinical applications of NPs should be revisited, and a deep understanding of the effects of NPs from the pathophysiologic basis of a disease may bring more sophisticated diagnostic opportunities and yield more effective therapies and preventive features. Correspondingly, this review highlights the significant contributions of NPs to modern medicine and drug delivery systems. This study also attempted to glimpse the future impact of NT in medicine and pharmaceuticals.

5.
Int J Adv Manuf Technol ; 125(3-4): 1015-1035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36644783

RESUMO

Bio-based polymers are a class of polymers made by living organisms, a few of them known and commercialized yet. Due to poor mechanical strength and economic constraints, they have not yet seen the extensive application. Instead, they have been an appropriate candidate for biological applications. Growing consumer knowledge of the environmental effect of polymers generated from petrochemical sources and a worldwide transition away from plastics with a lifespan of hundreds of years has resulted in greater interest in such hitherto unattainable sectors. Bio-based polymers come in various forms, including direct or "drop-in" replacements for their petrochemical counterparts with nearly identical properties or completely novel polymers that were previously unavailable, such as polylactide. Few of these bio-based polymers offer significantly improved technical specifications than their alternatives. Polylactic acid (PLA) has been well known in the last decade as a biodegradable thermoplastic source for use in 3DP by the "fused deposition modeling" method. The PLA market is anticipated to accomplish 5.2 billion US dollars in 2020 for its industrial usage. Conversely, 3DP is one of the emerging technologies with immense economic potential in numerous sectors where PLA is one of the critical options as the polymer source due to its environmentally friendly nature, glossiness, multicolor appearance, and ease of printing. The chemical structure, manufacturing techniques, standard features, and current market situation of PLA were examined in this study. This review looks at the process of 3DP that uses PLA filaments in extrusion-based 3DP technologies in particular. Several recent articles describing 3D-printed PLA items have been highlighted.

6.
Nutrients ; 14(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500994

RESUMO

The environment has rapidly looked at proven specialist task forces in the aftermath of the COVID-19 pandemic to build public health policies and measures to mitigate the effects of emerging coronaviruses. According to the researchers, taking 10 µg of 25-hydroxy vitamin D daily is recommended to keep us safe. There have been several studies recently indicating that there is a reduced risk of contracting Coronavirus by 25-hydroxy vitamin D consumption, even though there is no scientific data to prove that one would not affect the COVID-19 viral infection by 25-hydroxy vitamin D consumption. In this regard, the present study investigates the important literature and the role of 25-hydroxy vitamin D to prevent COVID-19 infection by conducting an in-silico study with SARS-CoV-2 spike protein as a target. Lopinavir, a previously reported drug candidate, served as a reference standard for the study. MD simulations were carried out to improve predictions of receptor-ligand complexes which offer novelty and strength to the current study. MD simulation protocols were explored and subjected to 25-hydroxy vitamin D and a known drug, Lopinavir. Comparison of ligands at refined models to the crystal structure led to promising results. Appropriate timescale simulations have been used to understand the activation mechanism, the role of water networks for receptor function, and the ligand binding process. Furthermore, MD simulations in combination with free energy calculations have also been carried out for lead optimization, evaluation of ligand binding modes, and assessment of ligand selectivity. From the results, 25-hydroxy vitamin D was discovered to have the vital interaction and highest potency in LBE, lower RMSD, and lower inhibition intensity similar to the standard. The findings from the current study suggested that 25-hydroxy vitamin D would be more effective in treating COVID-19. Compared with Lopinavir, 25-hydroxy vitamin D had the most potent interaction with the putative binding sites of the SARS-CoV-2 spike protein of COVID-19.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/química , Pandemias/prevenção & controle , SARS-CoV-2/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Vitamina D/farmacologia , Antivirais/farmacologia
7.
Arch Microbiol ; 204(12): 713, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396887

RESUMO

Alzheimer's disease (AD), also called senile dementia is a neurodegenerative disease seen commonly in the elderly and is characterised by the formation of ß-amyloid plaques and neurofibrillary tangles (NFT). Though a complete understanding of the disease is lacking, recent studies showed the role of the enzyme acetylcholinesterase (AChE) in pathogenesis. Finding new lead compounds from natural sources has always been a quest for researchers. Endophytic fungi are a set of microbes that reside within plants without causing any harm. This study focuses on screening endophytes for the production of active acetylcholinesterase inhibitors. Five endophytic fungi were isolated from Catharanthus roseus and screened for AChE inhibitory activity. Three isolates were found to inhibit AChE inhibitory activity and were distinguished based on molecular and microscopic methods. The mycelial extract was taken for the bioassay-guided column chromatography and TLC was performed on the active fraction. The GC-MS and NMR analysis identified the active compounds in the extract as 9-hexadecen-1-ol and erucamide. Molecular docking studies revealed that the compounds are thermodynamically feasible and have significant glide scores. Computational studies revealed that the hydroxyl group of 9-hexadecen-1-ol forms a hydrogen bond with Ser 293 in the active site of AChE, whereas the active site interactions were predominantly hydrophobic in the case of erucamide and are reflected in AChE inhibition assays.


Assuntos
Inibidores da Colinesterase , Doenças Neurodegenerativas , Humanos , Idoso , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/análise , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Domínio Catalítico , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química
8.
Virus Evol ; 8(2): veac077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105667

RESUMO

From 2016 to 2020, high pathogenicity avian influenza (HPAI) H5 viruses circulated in Asia, Europe, and Africa, causing waves of infections and the deaths of millions of wild and domestic birds and presenting a zoonotic risk. In late 2021, H5N1 HPAI viruses were isolated from poultry in Canada and also retrospectively from a great black-backed gull (Larus marinus), raising concerns that the spread of these viruses to North America was mediated by migratory wild bird populations. In February and April 2022, H5N1 HPAI viruses were isolated from a bald eagle (Haliaeetus leucocephalus) and broiler chickens in British Columbia, Canada. Phylogenetic analysis showed that the virus from bald eagle was genetically related to H5N1 HPAI virus isolated in Hokkaido, Japan, in January 2022. The virus identified from broiler chickens was a reassortant H5N1 HPAI virus with unique constellation genome segments containing PB2 and NP from North American lineage LPAI viruses, and the remaining gene segments were genetically related to the original Newfoundland-like H5N1 HPAI viruses detected in November and December 2021 in Canada. This is the first report of H5 HPAI viruses' introduction to North America from the Pacific and the North Atlantic-linked flyways and highlights the expanding risk of genetically distinct virus introductions from different geographical locations and the potential for local reassortment with both the American lineage LPAI viruses in wild birds and with both Asian-like and European-like H5 HPAI viruses. We also report the presence of some amino acid substitutions across each segment that might contribute to the replicative efficiency of these viruses in mammalian host, evade adaptive immunity, and pose a potential zoonotic risk.

9.
Microbiol Resour Announc ; 11(10): e0066222, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36129291

RESUMO

A complete 30,616-nucleotide Cervid atadenovirus A genome was determined from the tissues of black-tailed deer that had died in 2020 in British Columbia, Canada. Unique, nonsynonymous single-nucleotide polymorphisms in the E1B, Iva2, and E4.3 coding regions and deletions totaling 74 nucleotides that were not observed in moose and red deer isolates were present.

10.
Emerg Infect Dis ; 28(7): 1480-1484, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35731188

RESUMO

We isolated a novel reassortant influenza A(H10N7) virus from a harbor seal in British Columbia, Canada, that died from bronchointerstitial pneumonia. The virus had unique genome constellations involving lineages from North America and Eurasia and polymerase basic 2 segment D701N mutation, associated with adaptation to mammals.


Assuntos
Vírus da Influenza A Subtipo H10N7 , Influenza Aviária , Influenza Humana , Infecções por Orthomyxoviridae , Phoca , Animais , Colúmbia Britânica/epidemiologia , Vírus de DNA , Humanos , Vírus da Influenza A Subtipo H10N7/genética , Influenza Humana/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Filogenia , Vírus Reordenados/genética
11.
J Biomol Struct Dyn ; 40(4): 1764-1775, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33036548

RESUMO

Coronavirus disease 2019 (COVID-19), a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has drastically changed the lifestyle of people around the globe. Due to the lack of specific and effective antiviral drugs, transmission of the disease increases exponentially and makes it more serious and harder to control. Drugs that were assumed to be effective against COVID-19 have failed in various stages of clinical trials and this made the scientific community more disappointed. But, the race of researchers for developing new and effective antiviral to stop the disease progression still continues and our work is one among them. This study is an attempt to analyze the action of Tectoquinone and Acteoside; an important phytocompound, on SARS-CoV2 viral protease via in silico approach. The compounds were selected on the basis of their molecular docking values and they were subjected to molecular dynamics simulations about 50 ns to determine the stability and the thermodynamic feasibility between the target and the ligands. Binding energies like hydrogen bonding, hydrophobic and electrostatic interactions of the complexes were determined after MD simulations. The Pharmacokinetics and drug likeness evaluation of the compounds provide a strong evidence for the use of these compounds in developing drugs for clinical trials. Thus, the current study reveals the potential phytoconstituents present in Tectona grandis Linn to inhibit COVID-19 viral protease and thereby act as a lead therapeutic agent.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Glucosídeos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fenóis , Inibidores de Proteases/farmacologia , RNA Viral , SARS-CoV-2
12.
Vaccines (Basel) ; 9(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34960175

RESUMO

In Alberta, infectious laryngotracheitis virus (ILTV) infection is endemic in backyard poultry flocks; however, outbreaks are only sporadically observed in commercial flocks. In addition to ILTV vaccine revertant strains, wild-type strains are among the most common causes of infectious laryngotracheitis (ILT). Given the surge in live attenuated vaccine-related outbreaks, the goal of this study was to assess the efficacy of a recombinant herpesvirus of turkey (rHVT-LT) vaccine against a genotype VI Canadian wild-type ILTV infection. One-day-old specific pathogen-free (SPF) White Leghorn chickens were vaccinated with the rHVT-LT vaccine or mock vaccinated. At three weeks of age, half of the vaccinated and the mock-vaccinated animals were challenged. Throughout the experiment, weights were recorded, and feather tips, cloacal and oropharyngeal swabs were collected for ILTV genome quantification. Blood was collected to isolate peripheral blood mononuclear cells (PBMC) and quantify CD4+ and CD8+ T cells. At 14 dpi, the chickens were euthanized, and respiratory tissues were collected to quantify genome loads and histological examination. Results showed that the vaccine failed to decrease the clinical signs at 6 days post-infection. However, it was able to significantly reduce ILTV shedding through the oropharyngeal route. Overall, rHVT-LT produced a partial protection against genotype VI ILTV infection.

13.
J Basic Microbiol ; 61(10): 900-909, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34467566

RESUMO

Recently, the demand for fungal pigments has increased due to their several benefits over synthetic dyes. Many species of fungi are known to produce pigments and a large number of fungal strains for pigment production are yet to be extensively investigated. The natural pigment from sustainable natural sources has good economic and industrial value. Many synthetic colorants used in textile and various industries have many harmful effects on the human population and environment. Pigments and coloring agents may be extracted from a wide range of fungal species. These compounds are among the natural compounds having the most significant promise for medicinal, culinary, cosmetics, and textile applications. This study attempts to isolate and optimize the fermentation conditions of Penicillium sclerotiorum strain AK-1 for pigment production. A dark yellow-colored pigment was isolated from the strain with significant extractive value and antioxidant capacity. This study also identifies that the pigment does not have any cytotoxic effect and is multicomponent. The pigment production was optimized for the parameters such as pH, temperature, carbon and nitrogen source. Fabric dyeing experiments showed significant dyeing capacity of the pigment on cotton fabrics. Accordingly, the natural dye isolated from P. sclerotiorum strain AK-1 has a high potential for industrial-scale dyeing of cotton materials.


Assuntos
Corantes , Penicillium/metabolismo , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/isolamento & purificação , Antioxidantes , Biomassa , Carbono , Fermentação , Humanos , Concentração de Íons de Hidrogênio , Nitrogênio , Pigmentação , Temperatura , Têxteis
14.
J Wildl Dis ; 57(4): 983-986, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34516651

RESUMO

From 2018 to 2019, an outbreak of rabbit hemorrhagic disease virus 2 occurred in British Columbia, Canada, in feral and domestic European rabbits (Oryctolagus cuniculus). Anthropogenic translocation of infected animals is suspected to have played a role in the introduction and spread of the virus.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Animais , Colúmbia Britânica/epidemiologia , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/veterinária , Surtos de Doenças/veterinária
15.
J Basic Microbiol ; 61(8): 709-720, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34228389

RESUMO

Trypsin is a protein-digesting enzyme that is essential for the growth and regeneration of bone, muscle, cartilage, skin, and blood. The trypsin inhibitors have various role in diseases such as inflammation, Alzheimer's disease, pancreatitis, rheumatoid arthritis, cancer prognosis, metastasis and so forth. From 10 endophytic fungi isolated, we were able to screen only one strain with the required activity. The fungus with activity was obtained as an endophyte from Dendrophthoe falcata and was later identified as Nigrospora sphaerica. The activity was checked by enzyme assays using trypsin. The fungus was fermented and the metabolites were extracted and further purified by bioassay-guided chromatographic methods and the compound isolated was identified using gas chromatography-mass spectrometry. The compound was identified as quercetin. Docking studies were employed to study the interaction. The absorption, distribution, metabolism, and excretion analysis showed satisfactory results and the compound has no AMES and hepatotoxicity. This study reveals the ability of N. sphaerica to produce bioactive compound quercetin has been identified as a potential candidate for trypsin inhibition. The present communication describes the first report claiming that N. sphaerica strain AVA-1 can produce quercetin and it can be considered as a sustainable source of trypsin active-site inhibitors.


Assuntos
Ascomicetos/metabolismo , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação , Tripsina/metabolismo , Antioxidantes , Endófitos/metabolismo , Fermentação , Loranthaceae , Simulação de Acoplamento Molecular , Inibidores da Tripsina/metabolismo , Inibidores da Tripsina/farmacologia
16.
Viruses ; 13(4)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805117

RESUMO

Infectious laryngotracheitis (ILT) is an infectious upper respiratory tract disease that impacts the poultry industry worldwide. ILT is caused by an alphaherpesvirus commonly referred to as infectious laryngotracheitis virus (ILTV). Vaccination with live attenuated vaccines is practiced regularly for the control of ILT. However, extensive and improper use of live attenuated vaccines is related to vaccine viruses reverting to virulence. An increase in mortality and pathogenicity has been attributed to these vaccine revertant viruses. Recent studies characterized Canadian ILTV strains originating from ILT outbreaks as related to live attenuated vaccine virus revertants. However, information is scarce on the pathogenicity and transmission potential of these Canadian isolates. Hence, in this study, the pathogenicity and transmission potential of two wildtype ILTVs and a chicken embryo origin (CEO) vaccine revertant ILTV of Canadian origin were evaluated. To this end, 3-week-old specific pathogen-free chickens were experimentally infected with each of the ILTV isolates and compared to uninfected controls. Additionally, naïve chickens were exposed to the experimentally infected chickens to mimic naturally occurring infection. Pathogenicity of each of these ILTV isolates was evaluated by the severity of clinical signs, weight loss, mortality, and lesions observed at the necropsy. The transmission potential was evaluated by quantification of ILTV genome loads in oropharyngeal and cloacal swabs and tissue samples of the experimentally infected and contact-exposed chickens, as well as in the capacity to produce ILT in contact-exposed chickens. We observed that the CEO vaccine revertant ILTV isolate induced severe disease in comparison to the two wildtype ILTV isolates used in this study. According to ILTV genome load data, CEO vaccine revertant ILTV isolate was successfully transmitted to naïve contact-exposed chickens in comparison to the tested wildtype ILTV isolates. Overall, the Canadian origin CEO vaccine revertant ILTV isolate possesses higher virulence, and dissemination potential, when compared to the wildtype ILTV isolates used in this study. These findings have serious implications in ILT control in chickens.


Assuntos
Infecções por Herpesviridae/transmissão , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/genética , Herpesvirus Galináceo 1/patogenicidade , Doenças das Aves Domésticas/transmissão , Vacinas Virais/análise , Animais , Canadá , Células Cultivadas , Embrião de Galinha , Galinhas/virologia , Surtos de Doenças , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/isolamento & purificação , Fígado/citologia , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos , Vacinas Atenuadas/análise , Virulência
17.
Transbound Emerg Dis ; 68(4): 1711-1720, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33915034

RESUMO

Rabbit haemorrhagic disease virus 2 (RHDV2) is a newly emerging Lagovirus belonging to the family Caliciviridae. After its first discovery in 2010 in France, this highly pathogenic virus rapidly spread to neighbouring countries and has become the dominant strain, replacing the classical RHDV strains. RHDV2 was first reported in North America in 2016 in Mont-Joli, Quebec, Canada, and it was reported again in 2018 and 2019 on Vancouver Island and the southwest mainland of British Columbia (BC). The whole genome sequence of the RHDV2 Quebec isolate resembled the 2011 RHDV2-N11 isolate from Navarra, Spain with 97% identity at the nucleotide level. The epidemiological investigation related to this outbreak involved three hobby farms and one personal residence in Quebec. In February 2018, high mortality was reported in a large colony of feral rabbits on the Vancouver Island University Campus, Nanaimo, BC. The virus identified showed only 93% identity to the Quebec RHDV2 isolate at the nucleotide level. Additional cases of RHDV2 on Vancouver Island and on the BC mainland affecting feral and captive domestic, and commercial rabbits were reported subsequently. Vaccination was recommended to control the outbreak and an inactivated bivalent vaccine was made available to the private veterinary practices. In June 2019, an isolated RHDV2 outbreak was reported in pet rabbits in an apartment building in Vancouver, BC. This virus showed only 97% identity to the RHDV2 isolates responsible for the BC outbreak in 2018 at the nucleotide level, suggesting that it was an independent incursion. The outbreak in BC killed a large number of feral European rabbits; however, there were no confirmed cases of RHD in native rabbit species in BC.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Lagovirus , Animais , Colúmbia Britânica , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/genética , Filogenia , Coelhos
18.
Viruses ; 12(11)2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198373

RESUMO

Infectious laryngotracheitis virus (ILTV) is a herpes virus that causes an acute respiratory disease of poultry known as infectious laryngotracheitis (ILT). Chicken embryo origin (CEO) and tissue culture origin (TCO) live attenuated vaccines are routinely used for the control of ILT. However, vaccine virus is known to revert to virulence, and it has been recently shown that ILT field viral strains can undergo recombination with vaccinal ILTV and such recombinant ILT viruses possess greater transmission and pathogenicity potential. Based on complete or partial genes of the ILTV genome, few studies genotyped ILTV strains circulating in Canada, and so far, information is scarce on whole-genome sequencing or the presence of recombination in Canadian ILTV isolates. The objective of this study was to genetically characterize the 14 ILTV isolates that originated from three provinces in Canada (Alberta, British Columbia and Quebec). To this end, a phylogenetic analysis of 50 ILTV complete genome sequences, including 14 sequences of Canadian origin, was carried out. Additional phylogenetic analysis of the unique long, unique short and inverted repeat regions of the ILTV genome was also performed. We observed that 71%, 21% and 7% of the ILTV isolates were categorized as CEO revertant, wild-type and TCO vaccine-related, respectively. The sequences were also analyzed for potential recombination events, which included evidence in the British Columbia ILTV isolate. This event involved two ILTV vaccine (CEO) strains as parental strains. Recombination analysis also identified that one ILTV isolate from Alberta as a potential parental strain for a United States origin ILTV isolate. The positions of the possible recombination breakpoints were identified. These results indicate that the ILTV wild-type strains can recombine with vaccinal strains complicating vaccine-mediated control of ILT. Further studies on the pathogenicity of these ILTV strains, including the recombinant ILTV isolate are currently ongoing.


Assuntos
Genoma Viral , Genômica , Herpesvirus Galináceo 1/fisiologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Animais , Canadá/epidemiologia , DNA Viral , Genômica/métodos , Herpesvirus Galináceo 1/isolamento & purificação , Humanos , Lactente , Mutação , Filogenia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/transmissão , Recombinação Genética , Vacinas Virais/imunologia , Sequenciamento Completo do Genoma
19.
Polymers (Basel) ; 12(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947916

RESUMO

The copolymerization of styrene (St) with a bioderived monomer, pentadecylphenyl methacrylate (PDPMA), via atom transfer radical polymerization (ATRP) was studied in this work. The copolymerization reactivity ratio was calculated using the composition data obtained from 1H NMR spectroscopy, applying Kelen-Tudos and Finemann-Ross methods. The reactivity ratio of styrene (r1 = 0.93) and PDPMA (r2 = 0.05) suggested random copolymerization of the two monomers with alternation. The copolymerization conversion increased with increasing PDPMA concentration of the feed, upto 70 wt % PDPMA, but decreased thereafter. The molecular weight determined by gel permeation chromatography was lower than the theoretical values and the polydispersity increased from 1.32 to 2.19, with increasing PDPMA content in the feed. The influence of styrene content on the glass transition and thermal decomposition behavior of the copolymers was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis, respectively. Morphological characterization by transmission electron microscopy (TEM) revealed a phase separated soft core-hard shell type structure. The complex viscosity and adhesion properties like peel strength and lap shear strength of the copolymer on different substrates increased with increasing styrene content.

20.
J Fish Dis ; 43(9): 1019-1028, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33448429

RESUMO

Two cohorts of farmed Atlantic salmon, Salmo salar L., in British Columbia, Canada, were sampled for histopathology (nine organs) and piscine orthoreovirus (PRV-1) PCR after seawater entry at 2, 4, 6, 8, 10, 13, 16 and 19 months (20 fish per cohort per date). One cohort-from a PRV+ hatchery-remained PRV+ throughout the study (sample prevalence 80%-100%). In an adjacent pen, the other cohort-from a PRV- hatchery-was 0% PRV+ at 78 days, 30% PRV+ at 128 days and ≥95% PRV+ thereafter. Among sample cohorts that were ≥80% PRV+, median Ct values were nominally less among fish sourced from the PRV- hatchery (28.7-33.3) than the PRV+ hatchery (30.8-35.2). No microscopic lesions were associated with PRV Ct value (minimum = 25.6). About 3% of fish in both cohorts had moderate inflammatory heart lesions; among these fish, only one had skeletal muscle inflammation (mild), and PRV Ct values were similar to unaffected cohorts sampled the same day. Also, among 16 moribund or freshly dead fish sampled opportunistically during the study, 14 were PRV+, and none had significant inflammatory heart lesions. These data support the hypothesis that British Columbia PRV-1 does not contribute to mortality.


Assuntos
Doenças dos Peixes/virologia , Orthoreovirus/isolamento & purificação , Infecções por Reoviridae/veterinária , Animais , Aquicultura , Colúmbia Britânica , Estudos Transversais , Inflamação , Miocárdio/patologia , Orthoreovirus/genética , Orthoreovirus/patogenicidade , Infecções por Reoviridae/virologia , Salmo salar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA