Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 95: 106381, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004414

RESUMO

The photocatalytic degradation of methylene blue is a straightforward and cost-effective solution for water decontamination. Although many materials have been reported so far for this purpose, the proposed solutions inflicted high fabrication costs and low efficiencies. Here, we report on the synthesis of tetragonal (1T) and hexagonal (2H) mixed molybdenum disulfide (MoS2) heterostructures for an improved photocatalytic degradation efficiency by means of a single-step chemical vapor deposition (CVD) technique. We demonstrate that the 1T-MoS2/2H-MoS2 heterostructures exhibited a narrow bandgap âˆ¼ 1.7 eV, and a very low reflectance (<5%) under visible-light, owing to their particular vertical micro-flower-like structure. We exfoliated the CVD-synthesised 1T-MoS2/2H-MoS2 films to assess their photodegradation properties towards the standard methylene blue dye. Our results showed that the photo-degradation rate-constant of the 1T-MoS2/2H-MoS2 heterostructures is much greater under UV excitation (i.e., 12.5 × 10-3 min-1) than under visible light illumination (i.e., 9.2 × 10-3 min-1). Our findings suggested that the intermixing of the conductive 1T-MoS2 with the semi-conducting 2H-MoS2 phases favors the photogeneration of electron-hole pairs. More importantly, it promotes a higher efficient charge transfer, which accelerates the methylene blue photodegradation process.

2.
Sci Rep ; 12(1): 22096, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543838

RESUMO

Molybdenum disulfide (MoS2) has been combined so far with other photodetecting semiconductors as an enhancing agent owing to its optical and electronic properties. Existing approaches demonstrated MoS2-incorporated photodetector devices using complex and costly fabrication processes. Here, we report on simplified one-step on the chemical vapor deposition (CVD) based synthesis of a unique microfiber/microflower MoS2-based heterostructure formed by capturing MoO2 intermediate material during the CVD process. This particular morphology engenders a material chemical and electronic interplay exalting the heterostructure absorption up to ~ 98% over a large spectral range between 200 and 1500 nm. An arsenal of characterization methods were used to elucidate the properties of these novel heterostructures including Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectrometry, high-resolution transmission and scanning electron microscopies, and Kelvin probe force microscopy. Our findings revealed that the MoS2 and the MoO2 crystallize in the hexagonal and monoclinic lattices, respectively. The integration of the MoS2/MoO2 heterostructures into functional photodetectors revealed a strong photoresponse under both standard sun illumination AM1.5G and blue light excitation at 450 nm. Responsivity and detectivity values as high as 0.75 mA W-1 and 1.45 × 107 Jones, respectively, were obtained with the lowest light intensity of 20 mW cm-2 at only 1 V bias. These results demonstrate the high performances achieved by the unique MoS2/MoO2 heterostructure for broadband light harvesting and pave the way for their adoption in photodetection applications.

3.
Nanoscale ; 9(1): 277-287, 2017 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-27906391

RESUMO

Vertically aligned MoS2 nanosheets (NSs) with exposed edges were successfully synthesized over a large area (∼2 cm2). The NSs were grown using an ambient pressure chemical vapor deposition technique via rapid sulfurization of sputter deposited thick molybdenum films. Extensive characterization of the grown MoS2 NSs has been carried out using high resolution scanning and transmission electron microscopy (SEM & TEM). A special care was given to the TEM lamella preparation process by means of a focused ion beam to preserve the NS growth direction. The cross-section TEM measurements revealed the growth of densely packed, vertically aligned and straight MoS2 NSs. Additional characterization techniques such as atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence (PL) were used to evaluate the MoS2 NSs. These studies revealed the high crystallinity and quality of the synthesized NSs. The MoS2 NSs show visible light emission similar to mechanically exfoliated monolayer MoS2 NSs. The striking PL signal comes from the exposed edges as shown by experimental and theoretical calculations. The vertical MoS2 NSs also exhibit a hydrophobic character with a contact angle of 114°. The as-grown MoS2 NSs would be highly useful in the development of catalysis, nano-optoelectronics, gas-sensing and bio-sensing device applications.

4.
J Mater Chem B ; 3(36): 7237-7245, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32262831

RESUMO

We present the synthesis of a silver nanoparticle (AgNP) based drug-delivery system that achieves the simultaneous intracellular delivery of doxorubicin (Dox) and alendronate (Ald) and improves the anticancer therapeutic indices of both drugs. Water, under microwave irradiation, was used as the sole reducing agent in the size-controlled, bisphosphonate-mediated synthesis of stabilized AgNPs. AgNPs were coated with the bisphosphonate Ald, which templated nanoparticle formation and served as a site for drug attachment. The unreacted primary ammonium group of Ald remained free and was subsequently functionalized with either Rhodamine B (RhB), through amide formation, or Dox, through imine formation. The RhB-conjugated NPs (RhB-Ald@AgNPs) were studied in HeLa cell culture. Experiments involving the selective inhibition of cell membrane receptors were monitored by confocal fluorescence microscopy and established that macropinocytosis and clathrin-mediated endocytosis were the main mechanisms of cellular uptake. The imine linker of the Dox-modified nanoparticles (Dox-Ald@AgNPs) was exploited for acid-mediated intracellular release of Dox. We found that Dox-Ald@AgNPs had significantly greater anti-cancer activity in vitro than either Ald or Dox alone. Ald@AgNPs can accommodate the attachment of other drugs as well as targeting agents and therefore constitute a general platform for drug delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA