Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Metabolism ; 157: 155941, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871078

RESUMO

BACKGROUND: An altered gut microbiome characterized by reduced abundance of butyrate producing bacteria and reduced gene richness is associated with type 2 diabetes (T2D). An important complication of T2D is increased risk of cognitive impairment and dementia. The biguanide metformin is a commonly prescribed medication for the control of T2D and metformin treatment has been associated with a significant reduction in the risk of dementia and improved cognition, particularly in people with T2D. AIM: To investigate the associations of metformin use with cognition exploring potential mechanisms by analyzing the gut microbiome and plasma metabolome using shotgun metagenomics and HPLC-ESI-MS/MS, respectively. METHODS: We explored two independent cohorts: an observational study (Aging Imageomics) and a phase IV, randomized, double-blind, parallel-group, randomized pilot study (MEIFLO). From the two studies, we analyzed four study groups: (1) individuals with no documented medical history or medical treatment (n = 172); (2) people with long-term T2D on metformin monotherapy (n = 134); (3) people with long-term T2D treated with oral hypoglycemic agents other than metformin (n = 45); (4) a newly diagnosed T2D subjects on metformin monotherapy (n = 22). Analyses were also performed stratifying by sex. RESULTS: Several bacterial species belonging to the Proteobacteria (Escherichia coli) and Verrucomicrobia (Akkermansia muciniphila) phyla were positively associated with metformin treatment, while bacterial species belonging to the Firmicutes phylum (Romboutsia timonensis, Romboutsia ilealis) were negatively associated. Due to the consistent increase in A. muciniphila and decrease in R.ilealis in people with T2D subjects treated with metformin, we investigated the association between this ratio and cognition. In the entire cohort of metformin-treated T2D subjects, the A.muciniphila/R.ilealis ratio was not significantly associated with cognitive test scores. However, after stratifying by sex, the A.muciniphila/R. ilealis ratio was significantly and positively associated with higher memory scores and improved memory in men. Metformin treatment was associated with an enrichment of microbial pathways involved in the TCA cycle, and butanoate, arginine, and proline metabolism in both cohorts. The bacterial genes involved in arginine metabolism, especially in production of glutamate (astA, astB, astC, astD, astE, putA), were enriched following metformin intake. In agreement, in the metabolomics analysis, metformin treatment was strongly associated with the amino acid proline, a metabolite involved in the metabolism of glutamate. CONCLUSIONS: The beneficial effects of metformin may be mediated by changes in the composition of the gut microbiota and microbial-host-derived co-metabolites.


Assuntos
Cognição , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hipoglicemiantes , Metaboloma , Metformina , Humanos , Metformina/uso terapêutico , Metformina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Metaboloma/efeitos dos fármacos , Feminino , Idoso , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Cognição/efeitos dos fármacos , Método Duplo-Cego , Pessoa de Meia-Idade , Projetos Piloto
2.
Alzheimers Dement ; 20(5): 3322-3333, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38534027

RESUMO

INTRODUCTION: Fatty acids (FAs) are the building blocks of complex lipids and signaling compounds; the role of the lipidome fatty acid profile (LFA) in AD progression remains unclear. METHODS: The LFA of plasma and cerebrospinal fluid (CSF) samples from 289 participants (103 AD patients, 92 MCI patients, and 94 controls) was determined by GC-FID. The MCI subjects were followed up for 58 ± 12.5 months. RESULTS: In controls, CSF has a more neuroprotective LFA than plasma. In CSF, a higher content of docosahexaenoic acid was associated with a reduced risk of MCI-to-AD progression. In plasma, higher oleic acid content was associated with lower risk of AD, MCI, and MCI-to-AD progression, whereas higher levels of vaccenic acid and docosahexaenoic acid were associated with greater risk of AD and MCI, and higher rate of MCI-to-AD progression, respectively. DISCUSSION: The circulating LFA is involved in the pathogenesis and progression of AD. HIGHLIGHTS: The lipidome fatty acid profile in CSF and plasma was markedly different. Higher levels of vaccenic acid and lower levels of oleic acid in plasma were associated with greater risk of Alzheimer's disease. In plasma, higher levels of oleic acid were associated with a reduced risk of MCI-to-AD progression. Higher levels of docosahexaenoic acid in CSF were associated with a lower risk of MCI-to-AD progression. Higher levels of docosahexaenoic acid in plasma were associated with a greater rate of MCI-to-AD progression.


Assuntos
Doença de Alzheimer , Progressão da Doença , Ácidos Graxos , Lipidômica , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Masculino , Feminino , Ácidos Graxos/sangue , Ácidos Graxos/líquido cefalorraquidiano , Idoso , Disfunção Cognitiva/sangue , Disfunção Cognitiva/líquido cefalorraquidiano , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Ácidos Docosa-Hexaenoicos/sangue , Ácidos Docosa-Hexaenoicos/líquido cefalorraquidiano , Pessoa de Meia-Idade
3.
Antioxidants (Basel) ; 13(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397759

RESUMO

Obesity is a risk factor for highly prevalent age-related neurodegenerative diseases, the pathogenesis of whichinvolves mitochondrial dysfunction and protein oxidative damage. Lipoxidation, driven by high levels of peroxidizable unsaturated fatty acids and low antioxidant protection of the brain, stands out as a significant risk factor. To gain information on the relationship between obesity and brain molecular damage, in a porcine model of obesity we evaluated (1) the level of mitochondrial respiratory chain complexes, as the main source of free radical generation, by Western blot; (2) the fatty acid profile by gas chromatography; and (3) the oxidative modification of proteins by mass spectrometry. The results demonstrate a selectively higher amount of the lipoxidation-derived biomarker malondialdehyde-lysine (MDAL) (34% increase) in the frontal cortex, and positive correlations between MDAL and LDL levels and body weight. No changes were observed in brain fatty acid profile by the high-fat diet, and the increased lipid peroxidative modification was associated with increased levels of mitochondrial complex I (NDUFS3 and NDUFA9 subunits) and complex II (flavoprotein). Interestingly, introducing n3 fatty acids and a probiotic in the high-fat diet prevented the observed changes, suggesting that dietary components can modulate protein oxidative modification at the cerebral level and opening new possibilities in neurodegenerative diseases' prevention.

4.
BMC Med ; 22(1): 17, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38185624

RESUMO

BACKGROUND: Slower paces of aging are related to lower risk of developing diseases and premature death. Therefore, the greatest challenge of modern societies is to ensure that the increase in lifespan is accompanied by an increase in health span. To better understand the differences in human lifespan, new insight concerning the relationship between lifespan and the age of onset of diseases, and the ability to avoid them is needed. We aimed to comprehensively study, at a population-wide level, the sex-specific disease patterns associated with human lifespan. METHODS: Observational data from the SIDIAP database of a cohort of 482,058 individuals that died in Catalonia (Spain) at ages over 50 years old between the 1st of January 2006 and the 30th of June 2022 were included. The time to the onset of the first disease in multiple organ systems, the prevalence of escapers, the percentage of life free of disease, and their relationship with lifespan were evaluated considering sex-specific traits. RESULTS: In the study cohort, 50.4% of the participants were women and the mean lifespan was 83 years. The results show novel relationships between the age of onset of disease, health span, and lifespan. The key findings include: Firstly, the onset of both single and multisystem diseases is progressively delayed as lifespan increases. Secondly, the prevalence of escapers is lower in lifespans around life expectancy. Thirdly, the number of disease-free systems decreases until individuals reach lifespans around 87-88 years old, at which point it starts to increase. Furthermore, long-lived women are less susceptible to multisystem diseases. The associations between health span and lifespan are system-dependent, and disease onset and the percentage of life spent free of disease at the time of death contribute to explaining lifespan variability. Lastly, the study highlights significant system-specific disparities between women and men. CONCLUSIONS: Health interventions focused on delaying aging and age-related diseases should be the most effective in increasing not only lifespan but also health span. The findings of this research highlight the relevance of Electronic Health Records in studying the aging process and open up new possibilities in age-related disease prevention that should assist primary care professionals in devising individualized care and treatment plans.


Assuntos
Longevidade , Resiliência Psicológica , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Estudos de Coortes , Estudos Retrospectivos , Envelhecimento
5.
Geroscience ; 46(1): 683-696, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37999901

RESUMO

Genetic, metabolic, and clinical evidence links lipid dysregulation to an increased risk of Alzheimer's disease (AD). However, the role of lipids in the pathophysiological processes of AD and its clinical progression is unclear. We investigated the association between cerebrospinal fluid (CSF) lipidome and the pathological hallmarks of AD, progression from mild cognitive impairment (MCI) to AD, and the rate of cognitive decline in MCI patients. The CSF lipidome was analyzed by liquid chromatography coupled to mass spectrometry in an LC-ESI-QTOF-MS/MS platform for 209 participants: 91 AD, 92 MCI, and 26 control participants. The MCI patients were followed up for a median of 58 (± 12.5) months to evaluate their clinical progression to AD. Forty-eight (52.2%) MCI patients progressed to AD during follow-up. We found that higher CSF levels of hexacosanoic acid and ceramide Cer(d38:4) were associated with an increased risk of amyloid beta 42 (Aß42) positivity in CSF, while levels of phosphatidylethanolamine PE(40:0) were associated with a reduced risk. Higher CSF levels of sphingomyelin SM(30:1) were positively associated with pathological levels of phosphorylated tau in CSF. Cholesteryl ester CE(11D3:1) and an unknown lipid were recognized as the most associated lipid species with MCI to AD progression. Furthermore, TG(O-52:2) was identified as the lipid most strongly associated with the rate of progression. Our results indicate the involvement of membrane and intracellular neutral lipids in the pathophysiological processes of AD and the progression from MCI to AD dementia. Therefore, CSF neutral lipids can be used as potential prognostic markers for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Proteínas tau , Espectrometria de Massas em Tandem , Progressão da Doença , Biomarcadores , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fragmentos de Peptídeos/genética , Lipídeos
6.
Gut Microbes ; 15(2): 2290318, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38059755

RESUMO

Iron is required for the replication and growth of almost all bacterial species and in the production of myelin and neurotransmitters. Increasing clinical studies evidence that the gut microbiota plays a critical role in iron metabolism and cognition. However, the understanding of the complex iron-microbiome-cognition crosstalk remains elusive. In a recent study in the Aging Imageomics cohort (n = 1,030), we identified a positive association of serum ferritin (SF) with executive function (EF) as inferred from the semantic verbal fluency (SVF,) the total digit span (TDS) and the phonemic verbal fluency tests (PVF). Here, we explored the potential mechanisms by analyzing the gut microbiome and plasma metabolome using shotgun metagenomics and HPLC-ESI-MS/MS, respectively. Different bacterial species belonging to the Proteobacteria phylum (Klebsiella pneumoniae, Klebsiella michiganensis, Unclassified Escherichia) were negatively associated both with SF and executive function. At the functional level, an enrichment of microbial pathways involved in phenylalanine, arginine, and proline metabolism was identified. Consistently, phenylacetylglutamine, a metabolite derived from microbial catabolism of phenylalanine, was negatively associated with SF, EF, and semantic memory. Other metabolites such as ureidobutyric acid and 19,20-DiHDPA, a DHA-derived oxylipin, were also consistently and negatively associated with SF, EF, and semantic memory, while plasma eicosapentaenoic acid was positively associated. The associations of SF with cognition could be mediated by the gut microbiome through microbial-derived metabolites.


Assuntos
Microbioma Gastrointestinal , Humanos , Espectrometria de Massas em Tandem , Cognição , Bactérias/genética , Metaboloma , Fenilalanina , Ferro , Ferritinas
7.
Antioxidants (Basel) ; 12(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38136167

RESUMO

A non-dipping blood pressure (BP) pattern, which is frequently present in patients with obstructive sleep apnea (OSA), confers high cardiovascular risk. The mechanisms connecting these two conditions remain unclear. In the present study we performed a comprehensive analysis of the blood metabolipidome that aims to provide new insights into the molecular link between OSA and the dysregulation of circadian BP rhythmicity. This was an observational prospective longitudinal study involving adults with suspected OSA who were subjected to full polysomnography (PSG). Patients with an apnea-hypopnea index ≥ 5 events/h were included. Fasting plasma samples were obtained the morning after PSG. Based on the dipping ratio (DR; ratio of night/day BP values) measured via 24 h ambulatory BP monitoring, two groups were established: dippers (DR ≤ 0.9) and non-dippers (DR > 0.9). Treatment recommendations for OSA followed the clinical guidelines. Untargeted metabolomic and lipidomic analyses were performed in plasma samples via liquid chromatography-tandem mass spectrometry. Non-dipper patients represented 53.7% of the cohort (88/164 patients). A set of 31 metabolic species and 13 lipidic species were differentially detected between OSA patients who present a physiologic nocturnal BP decrease and those with abnormal BP dipping. Among the 44 differentially abundant plasma compounds, 25 were putatively identified, notably glycerophospholipids, glycolipids, sterols, and fatty acid derivates. Multivariate analysis defined a specific metabotype of non-dipping BP, which showed a significant dose-response relationship with PSG parameters of OSA severity, and with BP dipping changes after 6 months of OSA treatment with continuous positive airway pressure (CPAP). Bioinformatic analyses revealed that the identified metabolipidomic profile was found to be implicated in multiple systemic biological pathways, with potential physiopathologic implications for the circadian control of BP among individuals with OSA.

8.
Free Radic Biol Med ; 208: 728-747, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748717

RESUMO

One of the challenges facing science/biology today is uncovering the molecular bases that support and determine animal and human longevity. Nature, in offering a diversity of animal species that differ in longevity by more than 5 orders of magnitude, is the best 'experimental laboratory' to achieve this aim. Mammals, in particular, can differ by more than 200-fold in longevity. For this reason, most of the available evidence on this topic derives from comparative physiology studies. But why can human beings, for instance, reach 120 years whereas rats only last at best 4 years? How does nature change the longevity of species? Longevity is a species-specific feature resulting from an evolutionary process. Long-lived animal species, including humans, show adaptations at all levels of biological organization, from metabolites to genome, supported by signaling and regulatory networks. The structural and functional features that define a long-lived species may suggest that longevity is a programmed biological property.


Assuntos
Longevidade , Mamíferos , Ratos , Humanos , Animais , Longevidade/genética , Evolução Biológica , Transdução de Sinais , Especificidade da Espécie
9.
Alzheimers Res Ther ; 15(1): 134, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550750

RESUMO

BACKGROUND: Obstructive sleep apnoea (OSA) has a high prevalence in patients with Alzheimer's disease (AD). Both conditions have been shown to be associated with lipid dysregulation. However, the relationship between OSA severity and alterations in lipid metabolism in the brains of patients with AD has yet to be fully elucidated. In this context, we examined the cerebrospinal fluid (CSF) lipidome of patients with suspected OSA to identify potential diagnostic biomarkers and to provide insights into the pathophysiological mechanisms underlying the effect of OSA on AD. METHODS: The study included 91 consecutive AD patients who underwent overnight polysomnography (PSG) to diagnose severe OSA (apnoea-hypopnea index ≥ 30/h). The next morning, CSF samples were collected and analysed by liquid chromatography coupled to mass spectrometry in an LC-ESI-QTOF-MS/MS platform. RESULTS: The CSF levels of 11 lipid species were significantly different between AD patients with (N = 38) and without (N = 58) severe OSA. Five lipids (including oxidized triglyceride OxTG(57:2) and four unknown lipids) were significantly correlated with specific PSG measures of OSA severity related to sleep fragmentation and hypoxemia. Our analyses revealed a 4-lipid signature (including oxidized ceramide OxCer(40:6) and three unknown lipids) that provided an accuracy of 0.80 (95% CI: 0.71-0.89) in the detection of severe OSA. These lipids increased the discriminative power of the STOP-Bang questionnaire in terms of the area under the curve (AUC) from 0.61 (0.50-0.74) to 0.85 (0.71-0.93). CONCLUSIONS: Our results reveal a CSF lipidomic fingerprint that allows the identification of AD patients with severe OSA. Our findings suggest that an increase in central nervous system lipoxidation may be the principal mechanism underlying the association between OSA and AD.


Assuntos
Doença de Alzheimer , Apneia Obstrutiva do Sono , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Lipidômica , Espectrometria de Massas em Tandem , Apneia Obstrutiva do Sono/diagnóstico , Apneia Obstrutiva do Sono/complicações , Lipídeos , Inquéritos e Questionários
10.
Nutrients ; 15(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37447198

RESUMO

Celiac disease (CD) is included in the group of complex or multifactorial diseases, i.e., those caused by the interaction of genetic and environmental factors. Despite a growing understanding of the pathophysiological mechanisms of the disease, diagnosis is still often delayed and there are no effective biomarkers for early diagnosis. The only current treatment, a gluten-free diet (GFD), can alleviate symptoms and restore intestinal villi, but its cellular effects remain poorly understood. To gain a comprehensive understanding of CD's progression, it is crucial to advance knowledge across various scientific disciplines and explore what transpires after disease onset. Metabolomics studies hold particular significance in unravelling the complexities of multifactorial and multisystemic disorders, where environmental factors play a significant role in disease manifestation and progression. By analyzing metabolites, we can gain insights into the reasons behind CD's occurrence, as well as better comprehend the impact of treatment initiation on patients. In this review, we present a collection of articles that showcase the latest breakthroughs in the field of metabolomics in pediatric CD, with the aim of trying to identify CD biomarkers for both early diagnosis and treatment monitoring. These advancements shed light on the potential of metabolomic analysis in enhancing our understanding of the disease and improving diagnostic and therapeutic strategies. More studies need to be designed to cover metabolic profiles in subjects at risk of developing the disease, as well as those analyzing biomarkers for follow-up treatment with a GFD.


Assuntos
Doença Celíaca , Humanos , Criança , Dieta Livre de Glúten , Mucosa Intestinal , Metabolômica , Biomarcadores , Glutens
11.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373236

RESUMO

During pregnancy, maternal polyunsaturated fatty acids (PUFA) are transferred to the fetus through the placenta by specific FA transporters (FATP). A higher perinatal exposure to n-6 over n-3 PUFA could be linked to excess fat mass and obesity development later in life. In this context, we aimed to assess the associations between long chain PUFAs (LC-PUFAs) (n-6, n-3, and n-6/n-3 ratios) measured in the placenta at term birth with obesity-related parameters in the offspring at 6 years of age and assess whether these associations are dependent on the placental relative expression of fatty acid transporters. As results, the PUFAn-6/PUFAn-3 ratio was 4/1, which scaled up to 15/1 when considering only the arachidonic acid/eicosapentaenoic acid ratio (AA/EPA ratio). Positive associations between the AA/EPA ratio and offspring's obesity risk parameters were found with weight-SDS, BMI-SDS, percent fat mass-SDS, visceral fat, and HOMA-IR (r from 0.204 to 0.375; all p < 0.05). These associations were more noticeable in those subjects with higher expression of fatty acid transporters. Therefore, in conclusion, a higher placental AA/EPA ratio is positively associated with offspring's visceral adiposity and obesity risk parameters, which become more apparent in subjects with higher expressions of placental FATPs. Our results support the potential role of n-6 and n-3 LC-PUFA in the fetal programming of obesity risk in childhood. For the present study, 113 healthy pregnant women were recruited during the first trimester of pregnancy and their offspring were followed up at 6 years of age. The fatty acid profiles and the expression of fatty acid transporters (FATP1 and FATP4) were analyzed from placental samples at birth. Associations between LC-PUFA (n-6, n-3, and n-6/n-3 ratios) and obesity risk parameters (weight, body mass index (BMI), percent fat mass, visceral fat, and homeostatic model assessment of insulin resistance (HOMA-IR)) in the offspring at 6 years of age were examined.


Assuntos
Ácidos Graxos Ômega-3 , Placenta , Recém-Nascido , Humanos , Feminino , Gravidez , Placenta/metabolismo , Obesidade/etiologia , Obesidade/complicações , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos/metabolismo , Parto
12.
Redox Biol ; 64: 102772, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37339560

RESUMO

BACKGROUND: Oxidative stress is considered to play an important role in the pathogenesis of Alzheimer's disease (AD). It has been observed that oxidative damage to specific protein targets affecting particular functional networks is one of the mechanisms by which oxidative stress contributes to neuronal failure and consequently loss of cognition and AD progression. Studies are lacking in which oxidative damage is measured at both systemic and central fluid levels and in the same cohort of patients. We aimed to determine the levels of both plasma and cerebrospinal fluid (CSF) nonenzymatic protein damage in patients in the continuum of AD and to evaluate the relation of this damage with clinical progression from mild cognitive impairment (MCI) to AD. METHODS: Different markers of nonenzymatic post-translational protein modification, mostly from oxidative processes, were detected and quantified in plasma and CSF by isotope dilution gas chromatography‒mass spectrometry using selected ion monitoring (SIM-GC/MS) for 289 subjects: 103 AD, 92 MCI, and 94 control subjects. Characteristics of the study population such as age, sex, Mini-mental state examination, CSF AD biomarkers, and APOE ϵ4, were also considered. RESULTS: Forty-seven (52.8%) MCI patients progressed to AD during follow-up (58 ± 12.5 months). After controlling for age, sex, and APOE ϵ4 allele, plasma and CSF concentrations of protein damage markers were not associated with either diagnosis of AD or MCI. The CSF levels of nonenzymatic protein damage markers were associated with none of the CSF AD biomarkers. In addition, neither in CSF nor in plasma were the levels of protein damage associated with the MCI to AD progression. CONCLUSION: The lack of association between both CSF and plasma concentrations of nonenzymatic protein damage markers and AD diagnosis and progression suggests that oxidative damage in AD is a pathogenic mechanism specifically expressed at the cell-tissue level, not in extracellular fluids.


Assuntos
Doença de Alzheimer , Humanos , Peptídeos beta-Amiloides , Apolipoproteína E4 , Proteínas tau , Biomarcadores , Progressão da Doença , Fragmentos de Peptídeos
13.
Aging Dis ; 14(5): 1887-1916, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196109

RESUMO

Non-targeted LC-MS/MS-based lipidomic analysis was conducted in post-mortem human grey matter frontal cortex area 8 (GM) and white matter of the frontal lobe centrum semi-ovale (WM) to identify lipidome fingerprints in middle-aged individuals with no neurofibrillary tangles and senile plaques, and cases at progressive stages of sporadic Alzheimer's disease (sAD). Complementary data were obtained using RT-qPCR and immunohistochemistry. The results showed that WM presents an adaptive lipid phenotype resistant to lipid peroxidation, characterized by a lower fatty acid unsaturation, peroxidizability index, and higher ether lipid content than the GM. Changes in the lipidomic profile are more marked in the WM than in GM in AD with disease progression. Four functional categories are associated with the different lipid classes affected in sAD: membrane structural composition, bioenergetics, antioxidant protection, and bioactive lipids, with deleterious consequences affecting both neurons and glial cells favoring disease progression.

14.
Aging Dis ; 14(5): 1728-1738, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196122

RESUMO

Aberrant lipid metabolism has been strongly linked to Alzheimer's disease (AD) pathogenesis. However, the role of lipids in the pathophysiological processes of AD and their clinical progression is unclear. We hypothesized that plasma lipids are associated with the pathological hallmarks of AD, progression from mild cognitive impairment (MCI) to AD, and the rate of cognitive decline in MCI patients. To evaluate our hypotheses, we analysed the plasma lipidome profile by liquid chromatography coupled to mass spectrometry in an LC-ESI-QTOF-MS/MS platform for 213 subjects recruited consecutively: 104 AD, 89 MCI, and 20 control subjects. Forty-seven (52.8%) MCI patients progressed to AD during follow-up (58 ± 12.5 months). We found that higher plasma levels of sphingomyelin SM(36:0) and diglyceride DG(44:3) were associated with an increased risk of amyloid beta 42 (Aß42) positivity in CSF, while levels of SM(40:1) were associated with a reduced risk. Higher plasma levels of ether-linked triglyceride TG(O-60:10) were negatively associated with pathological levels of phosphorylated tau in CSF. Plasma levels of fatty acid ester of hydroxy fatty acid FAHFA(34:0) and ether-linked phosphatidylcholine PC(O-36:1) were positively associated with pathological levels of total tau in CSF. Regarding the plasma lipids most associated with progression from MCI to AD, our analysis detected phosphatidyl-ethanolamine plasmalogen PE(P-36:4), TG(59:12), TG(46:0), and TG(O-62:7). Furthermore, TG(O-62:7) was the lipid that was most strongly associated with the rate of progression. In conclusion, our results indicate that neutral and ether-linked lipids are involved in the pathophysiological processes of AD and the progression from MCI to AD dementia, suggesting the involvement of lipid-mediated antioxidant mechanisms in AD.

15.
Exp Gerontol ; 175: 112162, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004927

RESUMO

The evolutionary meaning and basic molecular mechanisms involved in the determination of longevity remain an unresolved problem. Currently, different theories are on offer in response to these biological traits and to explain the enormous range of longevities observed in the animal kingdom. These theories may be grouped into those that defend non-programmed aging (non-PA) and those that propose the existence of programmed aging (PA). In the present article we examine many observational and experimental data from both the field and from the laboratory and sound reasoning accumulated in recent decades both compatible and not with PA and non-PA evolutionary theories of aging. These analyses are briefly summarized and discussed. Our conclusion is that most of the data favour programmed aging with a possible contribution of non-PA antagonist pleiotropy in various cases.


Assuntos
Envelhecimento , Evolução Biológica , Animais , Envelhecimento/fisiologia , Longevidade/fisiologia , Fenótipo
16.
Aging Cell ; 22(6): e13821, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36951231

RESUMO

Aging biology entails a cell/tissue deregulated metabolism that affects all levels of biological organization. Therefore, the application of "omic" techniques that are closer to phenotype, such as metabolomics, to the study of the aging process should be a turning point in the definition of cellular processes involved. The main objective of the present study was to describe the changes in plasma metabolome associated with biological aging and the role of sex in the metabolic regulation during aging. A high-throughput untargeted metabolomic analysis was applied in plasma samples to detect hub metabolites and biomarkers of aging incorporating a sex/gender perspective. A cohort of 1030 healthy human adults (45.9% females, and 54.1% males) from 50 to 98 years of age was used. Results were validated using two independent cohorts (1: n = 146, 53% females, 30-100 years old; 2: n = 68, 70% females, 19-107 years old). Metabolites related to lipid and aromatic amino acid (AAA) metabolisms arose as the main metabolic pathways affected by age, with a high influence of sex. Globally, we describe changes in bioenergetic pathways that point to a decrease in mitochondrial ß-oxidation and an accumulation of unsaturated fatty acids and acylcarnitines that could be responsible for the increment of oxidative damage and inflammation characteristic of this physiological process. Furthermore, we describe for the first time the importance of gut-derived AAA catabolites in the aging process describing novel biomarkers that could contribute to better understand this physiological process but also age-related diseases.


Assuntos
Aminoácidos Aromáticos , Metaboloma , Masculino , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Adulto Jovem , Aminoácidos Aromáticos/metabolismo , Envelhecimento/metabolismo , Metabolômica/métodos , Biomarcadores/metabolismo
17.
Exp Gerontol ; 174: 112137, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871903

RESUMO

The strong interest shown in the study of the causes of aging in recent decades has uncovered many mechanisms that could contribute to the rate of aging. These include mitochondrial ROS production, DNA modification and repair, lipid peroxidation-induced membrane fatty acid unsaturation, autophagy, telomere shortening rate, apoptosis, proteostasis, senescent cells, and most likely there are many others waiting to be discovered. However, all these well-known mechanisms work only or mainly at the cellular level. Although it is known that organs within a single individual do not age at exactly the same rate, there is a well-defined species longevity. Therefore, loose coordination of aging rate among the different cells and tissues is needed to ensure species lifespan. In this article we focus on less known extracellular, systemic, and whole organism level mechanisms that could loosely coordinate aging of the whole individual to keep it within the margins of its species longevity. We discuss heterochronic parabiosis experiments, systemic factors distributed through the vascular system like DAMPs, mitochondrial DNA and its fragments, TF-like vascular proteins, and inflammaging, as well as epigenetic and proposed aging clocks situated at different levels of organization from individual cells to the brain. These interorgan systems can help to determine species longevity as a further adaptation to the ecosystem.


Assuntos
Ecossistema , Longevidade , Longevidade/genética , Epigênese Genética , Parabiose
18.
Antioxidants (Basel) ; 12(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36829852

RESUMO

One of the richest tissues in lipid content and diversity of the human body is the brain. The human brain is constitutively highly vulnerable to oxidative stress. This oxidative stress is a determinant in brain aging, as well as in the onset and progression of sporadic (late-onset) Alzheimer's disease (sAD). Glycerophospholipids are the main lipid category widely distributed in neural cell membranes, with a very significant presence for the ether lipid subclass. Ether lipids have played a key role in the evolution of the human brain compositional specificity and functionality. Ether lipids determine the neural membrane structural and functional properties, membrane trafficking, cell signaling and antioxidant defense mechanisms. Here, we explore the idea that ether lipids actively participate in the pathogenesis of sAD. Firstly, we evaluate the quantitative relevance of ether lipids in the human brain composition, as well as their role in the human brain evolution. Then, we analyze the implications of ether lipids in neural cell physiology, highlighting their inherent antioxidant properties. Finally, we discuss changes in ether lipid content associated with sAD and their physiopathological implications, and propose a mechanism that, as a vicious cycle, explains the potential significance of ether lipids in sAD.

19.
Exp Gerontol ; 174: 112134, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36849000

RESUMO

Mitochondria play a wide diversity of roles in cell physiology and have a key functional implication in cell bioenergetics and biology of free radicals. As the main cellular source of oxygen radicals, mitochondria have been postulated as the mediators of the cellular decline associated with the biological aging. Recent evidences have shown that mitochondrial free radical production is a highly regulated mechanism contributing to the biological determination of longevity which is species-specific. This mitochondrial free radical generation rate induces a diversity of adaptive responses and derived molecular damage to cell components, highlighting mitochondrial DNA damage, with biological consequences that influence the rate of aging of a given animal species. In this review, we explore the idea that mitochondria play a fundamental role in the determination of animal longevity. Once the basic mechanisms are discerned, molecular approaches to counter aging may be designed and developed to prevent or reverse functional decline, and to modify longevity.


Assuntos
Envelhecimento , Estresse Oxidativo , Animais , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/genética , Envelhecimento/fisiologia , Mitocôndrias/metabolismo , Radicais Livres/metabolismo , Longevidade/fisiologia , DNA Mitocondrial/genética
20.
Antioxidants (Basel) ; 12(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36671039

RESUMO

It is assumed that the human brain is especially susceptible to oxidative stress, based on specific traits such as a higher rate of mitochondrial free radical production, a high content in peroxidizable fatty acids, and a low antioxidant defense. However, it is also evident that human neurons, although they are post-mitotic cells, survive throughout an entire lifetime. Therefore, to reduce or avoid the impact of oxidative stress on neuron functionality and survival, they must have evolved several adaptive mechanisms to cope with the deleterious effects of oxidative stress. Several of these antioxidant features are derived from lipid adaptations. At least six lipid adaptations against oxidative challenge in the healthy human brain can be discerned. In this work, we explore the idea that neurons and, by extension, the human brain is endowed with an important arsenal of non-pro-oxidant and antioxidant measures to preserve neuronal function, refuting part of the initial premise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA