Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
BMC Med ; 21(1): 178, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170273

RESUMO

BACKGROUND: Early-stage breast cancer patients treated with chemotherapy risk the development of metabolic disease and weight gain, which can result in increased morbidity and reduced quality of life in survivorship. We aimed to analyze changes within the gastrointestinal microbiome of early-stage breast cancer patients treated with and without chemotherapy to investigate a potential relationship between dysbiosis, a systemic inflammatory response, and resultant anthropomorphic changes. METHODS: We undertook an a priori analysis of serially collected stool and plasma samples from 40 patients with early-stage breast cancer who underwent adjuvant endocrine therapy only, adjuvant chemotherapy only, or both. Gut microbiota were assessed by metagenomic comparison of stool samples following deep sequencing. Inflammatory biomarkers were evaluated by proteomic analysis of plasma and measurement of fecal calprotectin. Body composition was investigated by dual-energy X-ray absorptiometry to determine biomass indices. RESULTS: As opposed to treatment with endocrine therapy only, chemotherapy resulted in statistically and clinically significant weight gain and an increase in the android to gynoid ratio of fat distribution. Patients treated with chemotherapy gained an average of 0.15% total mass per month, as opposed to a significantly different loss of 0.19% in those patients who received endocrine-only therapy. Concurrently, a twofold increase in fecal calprotectin occurred after chemotherapy that is indicative of interferon-dependent inflammation and evidence of colonic inflammation. These anthropomorphic and inflammatory changes occurred in concert with a chemotherapy-dependent effect on the gut microbiome as evidenced by a reduction in both the abundance and variety of microbial species. CONCLUSIONS: We confirm the association of chemotherapy treatment with weight gain and potential deleterious anthropometric changes and suggest that alterations of bacterial flora may contribute to these phenomena through the induction of systemic inflammation. Consequently, the gut microbiome may be a future target for intervention in preventing chemotherapy-dependent anthropometric changes.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Estudos de Coortes , Estudos Prospectivos , Disbiose/induzido quimicamente , Qualidade de Vida , Proteômica , Inflamação/induzido quimicamente , Aumento de Peso , Fezes/química , Fezes/microbiologia , Antineoplásicos/efeitos adversos , Complexo Antígeno L1 Leucocitário/análise , Complexo Antígeno L1 Leucocitário/uso terapêutico
2.
Front Bioeng Biotechnol ; 11: 1160460, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113661

RESUMO

Introduction: Mast cells are highly granulated tissue-resident leukocytes that require a three-dimensional matrix to differentiate and mediate immune responses. However, almost all cultured mast cells rely on two-dimensional suspension or adherent cell culture systems, which do not adequately reflect the complex structure that these cells require for optimal function. Methods: Crystalline nanocellulose (CNC), consisting of rod-like crystals 4-15 nm in diameter and 0.2-1 µm in length, were dispersed in an agarose matrix (12.5% w/v), and bone marrow derived mouse mast cells (BMMC) were cultured on the agarose/CNC composite. BMMC were activated with the calcium ionophore A23187 or immunoglobulin E (IgE) and antigen (Ag) to crosslink high affinity IgE receptors (FcεRI). Results: BMMC cultured on a CNC/agarose matrix remained viable and metabolically active as measured by reduction of sodium 3'-[1-[(phenylamino)-carbony]-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzene-sulfonic acid hydrate (XTT), and the cells maintained their membrane integrity as analyzed by measuring the release of lactate dehydrogenase (LDH) and propidium iodide exclusion by flow cytometry. Culture on CNC/agarose matrix had no effect on BMMC degranulation in response to IgE/Ag or A23187. However, culture of BMMC on a CNC/agarose matrix inhibited A23187-and IgE/Ag-activated production of tumor necrosis factor (TNF) and other mediators such as IL-1ß, IL-4, IL-6, IL-13, MCP-1/CCL2, MMP-9 and RANTES by as much as 95%. RNAseq analysis indicated that BMMC expressed a unique and balanced transcriptome when cultured on CNC/agarose. Discussion: These data demonstrate that culture of BMMCs on a CNC/agarose matrix promotes cell integrity, maintains expression of surface biomarkers such as FcεRI and KIT and preserves the ability of BMMC to release pre-stored mediators in response to IgE/Ag and A23187. However, culture of BMMC on CNC/agarose matrix inhibits BMMC production of de novo synthesized mediators, suggesting that CNC may be altering specific phenotypic characteristics of these cells that are associated with late phase inflammatory responses.

3.
Microorganisms ; 11(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37110500

RESUMO

IMPORTANCE: Although highly effective in treating recurrent Clostridioides difficile infection (RCDI), the mechanisms of action of fecal microbial transplantation (FMT) are not fully understood. AIM: The aim of this study was to explore microbially derived products or pathways that could contribute to the therapeutic efficacy of FMT. METHODS: Stool shotgun metagenomic sequencing data from 18 FMT-treated RCDI patients at 4 points in time were used for the taxonomic and functional profiling of their gut microbiome. The abundance of the KEGG orthology (KO) groups was subjected to univariate linear mixed models to assess the significance of the observed differences between 0 (pre-FMT), 1, 4, and 12 weeks after FMT. RESULTS: Of the 59,987 KO groups identified by shotgun metagenomic sequencing, 27 demonstrated a statistically significant change after FMT. These KO groups are involved in many cellular processes, including iron homeostasis, glycerol metabolism, and arginine regulation, all of which have been implicated to play important roles in bacterial growth and virulence in addition to modulating the intestinal microbial composition. CONCLUSION: Our findings suggest potential changes in key KO groups post-FMT, which may contribute to FMT efficacy beyond the restored microbial composition/diversity and metabolism of bile acids and short-chain fatty acids. Future larger studies that include a fecal metabolomics analysis combined with animal model validation work are required to further elucidate the molecular mechanisms.

4.
Nucleic Acids Res ; 51(D1): D1220-D1229, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36305829

RESUMO

The Chemical Functional Ontology (ChemFOnt), located at https://www.chemfont.ca, is a hierarchical, OWL-compatible ontology describing the functions and actions of >341 000 biologically important chemicals. These include primary metabolites, secondary metabolites, natural products, food chemicals, synthetic food additives, drugs, herbicides, pesticides and environmental chemicals. ChemFOnt is a FAIR-compliant resource intended to bring the same rigor, standardization and formal structure to the terms and terminology used in biochemistry, food chemistry and environmental chemistry as the gene ontology (GO) has brought to molecular biology. ChemFOnt is available as both a freely accessible, web-enabled database and a downloadable Web Ontology Language (OWL) file. Users may download and deploy ChemFOnt within their own chemical databases or integrate ChemFOnt into their own analytical software to generate machine readable relationships that can be used to make new inferences, enrich their omics data sets or make new, non-obvious connections between chemicals and their direct or indirect effects. The web version of the ChemFOnt database has been designed to be easy to search, browse and navigate. Currently ChemFOnt contains data on 341 627 chemicals, including 515 332 terms or definitions. The functional hierarchy for ChemFOnt consists of four functional 'aspects', 12 functional super-categories and a total of 173 705 functional terms. In addition, each of the chemicals are classified into 4825 structure-based chemical classes. ChemFOnt currently contains 3.9 million protein-chemical relationships and ∼10.3 million chemical-functional relationships. The long-term goal for ChemFOnt is for it to be adopted by databases and software tools used by the general chemistry community as well as the metabolomics, exposomics, metagenomics, genomics and proteomics communities.


Assuntos
Bases de Dados de Compostos Químicos , Software , Bases de Dados Factuais , Ontologia Genética , Genômica , Proteômica
5.
Gastroenterology ; 164(2): 228-240, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36183751

RESUMO

BACKGROUND & AIMS: Inflammatory bowel diseases (IBD) are affected by dietary factors, including nondigestible carbohydrates (fibers), which are fermented by colonic microbes. Fibers are overall beneficial, but not all fibers are alike, and some patients with IBD report intolerance to fiber consumption. Given reproducible evidence of reduced fiber-fermenting microbes in patients with IBD, we hypothesized that fibers remain intact in select patients with reduced fiber-fermenting microbes and can then bind host cell receptors, subsequently promoting gut inflammation. METHODS: Colonic biopsies cultured ex vivo and cell lines in vitro were incubated with oligofructose (5 g/L), or fermentation supernatants (24-hour anaerobic fermentation) and immune responses (cytokine secretion [enzyme-linked immunosorbent assay/meso scale discovery] and expression [quantitative polymerase chain reaction]) were assessed. Influence of microbiota in mediating host response was examined and taxonomic classification of microbiota was conducted with Kraken2 and metabolic profiling by HUMAnN2, using R software. RESULTS: Unfermented dietary ß-fructan fibers induced proinflammatory cytokines in a subset of IBD intestinal biopsies cultured ex vivo, and immune cells (including peripheral blood mononuclear cells). Results were validated in an adult IBD randomized controlled trial examining ß-fructan supplementation. The proinflammatory response to intact ß-fructan required activation of the NLRP3 and TLR2 pathways. Fermentation of ß-fructans by human gut whole microbiota cultures reduced the proinflammatory response, but only when microbes were collected from patients without IBD or patients with inactive IBD. Fiber-induced immune responses correlated with microbe functions, luminal metabolites, and dietary fiber avoidance. CONCLUSION: Although fibers are typically beneficial in individuals with normal microbial fermentative potential, some dietary fibers have detrimental effects in select patients with active IBD who lack fermentative microbe activities. The study is publicly accessible at the U.S. National Institutes of Health database (clinicaltrials.gov identification number NCT02865707).


Assuntos
Frutanos , Doenças Inflamatórias Intestinais , Adulto , Humanos , Leucócitos Mononucleares , Intestinos , Fibras na Dieta , Inflamação
6.
Nat Commun ; 13(1): 1617, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338140

RESUMO

CRISPR/Cas complexes enable precise gene editing in a wide variety of organisms. While the rigid identification of DNA sequences by these systems minimizes the potential for off-target effects, it consequently poses a problem for the recognition of sequences containing naturally occurring polymorphisms. The presence of genetic variance such as single nucleotide polymorphisms (SNPs) in a gene sequence can compromise the on-target activity of CRISPR systems. Thus, when attempting to target multiple variants of a human gene, or evolved variants of a pathogen gene using a single guide RNA, more flexibility is desirable. Here, we demonstrate that Cas9 can tolerate the inclusion of universal bases in individual guide RNAs, enabling simultaneous targeting of polymorphic sequences. Crucially, we find that specificity is selectively degenerate at the site of universal base incorporation, and remains otherwise preserved. We demonstrate the applicability of this technology to targeting multiple naturally occurring human SNPs with individual guide RNAs and to the design of Cas12a/Cpf1-based DETECTR probes capable of identifying multiple evolved variants of the HIV protease gene. Our findings extend the targeting capabilities of CRISPR/Cas systems beyond their canonical spacer sequences and highlight a use of natural and synthetic universal bases.


Assuntos
Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Edição de Genes , Humanos
7.
Front Microbiol ; 13: 829378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185850

RESUMO

Shotgun metagenomics studies have improved our understanding of microbial population dynamics and have revealed significant contributions of microbes to gut homeostasis. They also allow in silico inference of the metagenome. While they link the microbiome with metabolic abnormalities associated with disease phenotypes, they do not capture microbial gene expression patterns that occur in response to the multitude of stimuli that constantly ambush the gut environment. Metatranscriptomics closes that gap, but its implementation is more expensive and tedious. We assessed the metabolic perturbations associated with gut inflammation using shotgun metagenomics and metatranscriptomics. Shotgun metagenomics detected changes in abundance of bacterial taxa known to be SCFA producers, which favors gut homeostasis. Bacteria in the phylum Firmicutes were found at decreased abundance, while those in phyla Bacteroidetes and Proteobacteria were found at increased abundance. Surprisingly, inferring the coding capacity of the microbiome from shotgun metagenomics data did not result in any statistically significant difference, suggesting functional redundancy in the microbiome or poor resolution of shotgun metagenomics data to profile bacterial pathways, especially when sequencing is not very deep. Obviously, the ability of metatranscriptomics libraries to detect transcripts expressed at basal (or simply low) levels is also dependent on sequencing depth. Nevertheless, metatranscriptomics informed about contrasting roles of bacteria during inflammation. Functions involved in nutrient transport, immune suppression and regulation of tissue damage were dramatically upregulated, perhaps contributed by homeostasis-promoting bacteria. Functions ostensibly increasing bacteria pathogenesis were also found upregulated, perhaps as a consequence of increased abundance of Proteobacteria. Bacterial protein synthesis appeared downregulated. In summary, shotgun metagenomics was useful to profile bacterial population composition and taxa relative abundance, but did not inform about differential gene content associated with inflammation. Metatranscriptomics was more robust for capturing bacterial metabolism in real time. Although both approaches are complementary, it is often not possible to apply them in parallel. We hope our data will help researchers to decide which approach is more appropriate for the study of different aspects of the microbiome.

8.
JPEN J Parenter Enteral Nutr ; 46(6): 1393-1403, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35043436

RESUMO

BACKGROUND: Short-bowel syndrome (SBS) in neonates is associated with microbial dysbiosis due to intestinal surgery, prolonged hospitalization, enteral nutrition, and repeated antibiotic exposure. Sepsis and liver disease, leading causes of morbidity and mortality in SBS, may relate to such intestinal dysbiosis. We investigated the safety and feasibility of fecal microbial transplant (FMT) to alter intestinal microbial composition in SBS piglets. METHODS: Following a 75% distal small-intestinal resection, piglets were fed parenteral nutrition with an elemental diet and randomized to saline (SAL; n = 12) or FMT (n = 12) treatments delivered by gastric tube on day 2 (d2). The FMT donor was a healthy adult pig. Comparisons were also made to healthy sow-fed littermate controls (SOW; n = 6). Stool samples were collected daily, and tissue samples were collected at baseline and termination. Microbial DNA was extracted from stool and analyzed using 16S ribosomal RNA sequencing. RESULTS: All piglets survived to the end point. On d2-d4, FMT piglets had some differences in microbiota composition compared with SAL, SOW, and donor counterparts. Between base and term, there were transitory changes to alpha and beta diversity in FMT and SAL. CONCLUSION: FMT treatment in postsurgical neonatal piglets with SBS appears safe, with no increase in sepsis and no mortality. In SBS piglets, FMT induced transient changes to the intestinal microbiota. However, these changes did not persist long-term.


Assuntos
Sepse , Síndrome do Intestino Curto , Animais , Disbiose , Transplante de Microbiota Fecal , Fezes , Intestinos , Sepse/terapia , Síndrome do Intestino Curto/terapia , Suínos
9.
Nucleic Acids Res ; 50(D1): D622-D631, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34986597

RESUMO

The Human Metabolome Database or HMDB (https://hmdb.ca) has been providing comprehensive reference information about human metabolites and their associated biological, physiological and chemical properties since 2007. Over the past 15 years, the HMDB has grown and evolved significantly to meet the needs of the metabolomics community and respond to continuing changes in internet and computing technology. This year's update, HMDB 5.0, brings a number of important improvements and upgrades to the database. These should make the HMDB more useful and more appealing to a larger cross-section of users. In particular, these improvements include: (i) a significant increase in the number of metabolite entries (from 114 100 to 217 920 compounds); (ii) enhancements to the quality and depth of metabolite descriptions; (iii) the addition of new structure, spectral and pathway visualization tools; (iv) the inclusion of many new and much more accurately predicted spectral data sets, including predicted NMR spectra, more accurately predicted MS spectra, predicted retention indices and predicted collision cross section data and (v) enhancements to the HMDB's search functions to facilitate better compound identification. Many other minor improvements and updates to the content, the interface, and general performance of the HMDB website have also been made. Overall, we believe these upgrades and updates should greatly enhance the HMDB's ease of use and its potential applications not only in human metabolomics but also in exposomics, lipidomics, nutritional science, biochemistry and clinical chemistry.


Assuntos
Bases de Dados Genéticas , Metaboloma/genética , Metabolômica/classificação , Humanos , Lipidômica/classificação , Espectrometria de Massas , Interface Usuário-Computador
10.
Microorganisms ; 11(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36677293

RESUMO

Ruminants are foregut fermenters that have the remarkable ability of converting plant polymers that are indigestible to humans into assimilable comestibles like meat and milk, which are cornerstones of human nutrition. Ruminants establish a symbiotic relationship with their microbiome, and the latter is the workhorse of carbohydrate fermentation. On the other hand, during carbohydrate fermentation, synthesis of propionate sequesters H, thus reducing its availability for the ultimate production of methane (CH4) by methanogenic archaea. Biochemically, methane is the simplest alkane and represents a downturn in energetic efficiency in ruminants; environmentally, it constitutes a potent greenhouse gas that negatively affects climate change. Prevotella is a very versatile microbe capable of processing a wide range of proteins and polysaccharides, and one of its fermentation products is propionate, a trait that appears conspicuous in P. ruminicola strain 23. Since propionate, but not acetate or butyrate, constitutes an H sink, propionate-producing microbes have the potential to reduce methane production. Accordingly, numerous studies suggest that members of the genus Prevotella have the ability to divert the hydrogen flow in glycolysis away from methanogenesis and in favor of propionic acid production. Intended for a broad audience in microbiology, our review summarizes the biochemistry of carbohydrate fermentation and subsequently discusses the evidence supporting the essential role of Prevotella in lignocellulose processing and its association with reduced methane emissions. We hope this article will serve as an introduction to novice Prevotella researchers and as an update to others more conversant with the topic.

11.
Front Immunol ; 12: 780910, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858437

RESUMO

HIV infection is associated with a wide range of changes in microbial communities and immune cell components of the oral cavity. The purpose of this study was to evaluate the oral microbiome in relationship to oral neutrophils in HIV-infected compared to healthy individuals. We evaluated oral washes and saliva samples from HIV-infected individuals (n=52) and healthy controls (n=43). Using 16S-rRNA gene sequencing, we found differential ß-diversity using Principal Coordinate Analysis (PCoA) with Bray-Curtis distances. The α-diversity analysis by Faith's, Shannon, and observed OTUs indexes indicated that the saliva samples from HIV-infected individuals harbored significantly richer bacterial communities compared to the saliva samples from healthy individuals. Notably, we observed that five species of Spirochaeta including Spirochaetaceae, Spirochaeta, Treponema, Treponema amylovorum, and Treponema azotonutricum were significantly abundant. In contrast, Helicobacter species were significantly reduced in the saliva of HIV-infected individuals. Moreover, we found a significant reduction in the frequency of oral neutrophils in the oral cavity of HIV-infected individuals, which was positively related to their CD4+ T cell count. In particular, we noted a significant decline in CD44 expressing neutrophils and the intensity of CD44 expression on oral neutrophils of HIV-infected individuals. This observation was supported by the elevation of soluble CD44 in the saliva of HIV-infected individuals. Overall, the core oral microbiome was distinguishable between HIV-infected individuals on antiretroviral therapy compared to the HIV-negative group. The observed reduction in oral neutrophils might likely be related to the low surface expression of CD44, resulting in a higher bacterial diversity and richness in HIV-infected individuals.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/microbiologia , Boca/imunologia , Boca/microbiologia , Neutrófilos/imunologia , Humanos , Microbiota , Saliva/microbiologia
12.
BMC Plant Biol ; 21(1): 412, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496757

RESUMO

BACKGROUND: Fusarium oxysporum f. sp. lycopersici (Fol) is a compendium of pathogenic and non-pathogenic fungal strains. Pathogenic strains may cause vascular wilt disease and produce considerable losses in commercial tomato plots. To gain insight into the molecular mechanisms mediating resistance to Fol in tomato, the aim of our study was to characterize the transcriptional response of three cultivars (CT1, CT2 and IAC391) to a pathogenic (Fol-pt) and a non-pathogenic (Fo-npt) strain of Fo. RESULTS: All cultivars exhibited differentially expressed genes in response to each strain of the fungus at 36 h post-inoculation. For the pathogenic strain, CT1 deployed an apparent active defense response that included upregulation of WRKY transcription factors, an extracellular chitinase, and terpenoid-related genes, among others. In IAC391, differentially expressed genes included upregulated but mostly downregulated genes. Upregulated genes mapped to ethylene regulation, pathogenesis regulation and transcription regulation, while downregulated genes potentially impacted defense responses, lipid transport and metal ion binding. Finally, CT2 exhibited mostly downregulated genes upon Fol-pt infection. This included genes involved in transcription regulation, defense responses, and metal ion binding. CONCLUSIONS: Results suggest that CT1 mounts a defense response against Fol-pt. IAC391 exhibits an intermediate phenotype whereby some defense response genes are activated, and others are suppressed. Finally, the transcriptional profile in the CT2 hints towards lower levels of resistance. Fo-npt also induced transcriptional changes in all cultivars, but to a lesser extent. Results of this study will support genetic breeding programs currently underway in the zone.


Assuntos
Fusarium/patogenicidade , Interações Hospedeiro-Patógeno/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Cromossomos de Plantas , Colômbia , Resistência à Doença/genética , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Fatores de Transcrição/genética
13.
PLoS Biol ; 19(8): e3001387, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34411088

RESUMO

The interaction of neutrophils with T cells has been the subject of debate and controversies. Previous studies have suggested that neutrophils may suppress or activate T cells. Despite these studies, the interaction between neutrophils and T cells has remained a largely unexplored field. Here, based on our RNA sequencing (RNA-seq) analysis, we found that neutrophils have differential transcriptional and functional profiling depending on the CD4 T-cell count of the HIV-infected individual. In particular, we identified that neutrophils in healthy individuals express surface Galectin-9 (Gal-9), which is down-regulated upon activation, and is consistently down-regulated in HIV-infected individuals. However, down-regulation of Gal-9 was associated with CD4 T-cell count of patients. Unstimulated neutrophils express high levels of surface Gal-9 that is bound to CD44, and, upon stimulation, neutrophils depalmitoylate CD44 and induce its movement out of the lipid raft. This process causes the release of Gal-9 from the surface of neutrophils. In addition, we found that neutrophil-derived exogenous Gal-9 binds to cell surface CD44 on T cells, which promotes LCK activation and subsequently enhances T-cell activation. Furthermore, this process was regulated by glycolysis and can be inhibited by interleukin (IL)-10. Together, our data reveal a novel mechanism of Gal-9 shedding from the surface of neutrophils. This could explain elevated plasma Gal-9 levels in HIV-infected individuals as an underlying mechanism of the well-characterized chronic immune activation in HIV infection. This study provides a novel role for the Gal-9 shedding from neutrophils. We anticipate that our results will spark renewed investigation into the role of neutrophils in T-cell activation in other acute and chronic conditions, as well as improved strategies for modulating Gal-9 shedding.


Assuntos
Galectinas/metabolismo , Infecções por HIV/imunologia , Receptores de Hialuronatos/metabolismo , Ativação Linfocitária , Neutrófilos/fisiologia , Contagem de Linfócito CD4 , Estudos de Casos e Controles , Glicólise , Humanos , Interleucina-10/metabolismo , Cultura Primária de Células
14.
Front Cell Dev Biol ; 9: 696545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249945

RESUMO

The nasal septum cartilage is a specialized hyaline cartilage important for normal midfacial growth. Abnormal midfacial growth is associated with midfacial hypoplasia and nasal septum deviation (NSD). However, the underlying genetics and associated functional consequences of these two anomalies are poorly understood. We have previously shown that loss of Bone Morphogenetic Protein 7 (BMP7) from neural crest (BMP7 ncko ) leads to midfacial hypoplasia and subsequent septum deviation. In this study we elucidate the cellular and molecular abnormalities underlying NSD using comparative gene expression, quantitative proteomics, and immunofluorescence analysis. We show that reduced cartilage growth and septum deviation are associated with acquisition of elastic cartilage markers and share similarities with osteoarthritis (OA) of the knee. The genetic reduction of BMP2 in BMP7 ncko mice was sufficient to rescue NSD and suppress elastic cartilage markers. To our knowledge this investigation provides the first genetic example of an in vivo cartilage fate switch showing that this is controlled by the relative balance of BMP2 and BMP7. Cellular and molecular changes similar between NSD and knee OA suggest a related etiology underlying these cartilage abnormalities.

15.
Clin Transl Immunology ; 10(5): e1289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094548

RESUMO

OBJECTIVES: Regulatory T cells (Tregs) are widely recognised as a subset of CD4+CD25+FOXP3+ T cells that have a key role in maintaining immune homeostasis. The impact of HIV-1 infection on immunological properties and effector functions of Tregs has remained the topic of debate and controversy. In the present study, we investigated transcriptional profile and functional properties of Tregs in HIV-1-infected individuals either receiving antiretroviral therapy (ART, n = 50) or long-term non-progressors (LTNPs, n = 24) compared to healthy controls (HCs, n = 38). METHODS: RNA sequencing (RNAseq), flow cytometry-based immunophenotyping and functional assays were performed to study Tregs in different HIV cohorts. RESULTS: Our RNAseq analysis revealed that Tregs exhibit different transcriptional profiles in HIV-infected individuals. While Tregs from patients on ART upregulate pathways associated with a more suppressive (activated) phenotype, Tregs in LTNPs exhibit upregulation of pathways associated with impaired suppressive properties. These observations may explain a higher propensity for autoimmune diseases in LTNPs. Also, we found substantial upregulation of HLA-F mRNA and HLA-F protein in Tregs from HIV-infected subjects compared to healthy individuals. These observations highlight a potential role for this non-classical HLA in Tregs in the context of HIV infection, which should be investigated further in other chronic viral infections and cancer. CONCLUSION: Our study has provided a novel insight into Tregs at the transcriptional and functional levels in different HIV-infected groups.

16.
Sci Rep ; 11(1): 13053, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158543

RESUMO

Detection of low abundance target DNA/RNA for clinical or research purposes is challenging because the target sequences can be hidden under a large background of human genomic or non-human metagenomic sequences. We describe a probe-based capture method to enrich for target sequences with DNA-clicked iron oxide nanoparticles. Our method was tested against commercial capture assays using streptavidin beads, on a set of probes derived from a common genotype of the hepatitis C virus. We showed that our method is more specific and sensitive, most likely due to the combination of an inert silica coating and a high density of DNA probes clicked to the nanoparticles. This facilitates target capture below the limits of detection for TaqMan qPCR, and we believe that this method has the potential to transform management of infectious diseases.


Assuntos
Química Click , DNA/análise , Nanopartículas Magnéticas de Óxido de Ferro/química , Oligonucleotídeos/química , RNA/análise , Genoma Viral , Hepacivirus/genética , Hepatite/sangue , Hepatite/virologia , Humanos , Estreptavidina/química
17.
J Agric Food Chem ; 69(5): 1555-1566, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33522796

RESUMO

Nicotinamide adenine dinucleotide (NAD+) plays a vital role in cellular processes that govern human health and disease. Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in NAD+ biosynthesis. Thus, boosting NAD+ level via an increase in NAMPT levels is an attractive approach for countering the effects of aging and metabolic disease. This study aimed to establish IRW (Ile-Arg-Trp), a small tripeptide derived from ovotransferrin, as a booster of NAMPT levels. Treatment of muscle (L6) cells with IRW increased intracellular NAMPT protein levels (2.2-fold, p < 0.05) and boosted NAD+ (p < 0.01). Both immunoprecipitation and recombinant NAMPT assays indicated the possible NAMPT-activating ability of IRW (p < 0.01). Similarly, IRW increased NAMPT mRNA and protein levels in the liver (2.6-fold, p < 0.01) and muscle tissues (2.3-fold, p < 0.05) of C57BL/6J mice fed with a high-fat diet (HFD). A significantly increased level of circulating NAD+ was also observed following IRW treatment (4.7 fold, p < 0.0001). Dosing of Drosophila melanogaster with IRW elevated both D-NAAM (fly NAMPT) and NAD+ in vivo (p < 0.05). However, IRW treatment did not boost NAMPT levels in SIRT1 KO cells, indicating a possible SIRT1 dependency for the pharmacological effect. Overall, these data indicate that IRW is a novel small peptide booster of the NAMPT pool.


Assuntos
Citocinas/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Peptídeos/administração & dosagem , Animais , Linhagem Celular , Citocinas/genética , Drosophila melanogaster , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Obesidade/genética
18.
Cell Rep ; 34(2): 108609, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33440149

RESUMO

Stiffness in the tissue microenvironment changes in most diseases and immunological conditions, but its direct influence on the immune system is poorly understood. Here, we show that static tension impacts immune cell function, maturation, and metabolism. Bone-marrow-derived and/or splenic dendritic cells (DCs) grown in vitro at physiological resting stiffness have reduced proliferation, activation, and cytokine production compared with cells grown under higher stiffness, mimicking fibro-inflammatory disease. Consistently, DCs grown under higher stiffness show increased activation and flux of major glucose metabolic pathways. In DC models of autoimmune diabetes and tumor immunotherapy, tension primes DCs to elicit an adaptive immune response. Mechanistic workup identifies the Hippo-signaling molecule, TAZ, as well as Ca2+-related ion channels, including potentially PIEZO1, as important effectors impacting DC metabolism and function under tension. Tension also directs the phenotypes of monocyte-derived DCs in humans. Thus, mechanical stiffness is a critical environmental cue of DCs and innate immunity.


Assuntos
Células Dendríticas/imunologia , Imunidade Inata/imunologia , Imunoterapia/métodos , Rigidez Vascular/imunologia , Humanos , Transdução de Sinais
19.
Front Med (Lausanne) ; 8: 771607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977072

RESUMO

Machine learning (ML) approaches are a collection of algorithms that attempt to extract patterns from data and to associate such patterns with discrete classes of samples in the data-e.g., given a series of features describing persons, a ML model predicts whether a person is diseased or healthy, or given features of animals, it predicts weather an animal is treated or control, or whether molecules have the potential to interact or not, etc. ML approaches can also find such patterns in an agnostic manner, i.e., without having information about the classes. Respectively, those methods are referred to as supervised and unsupervised ML. A third type of ML is reinforcement learning, which attempts to find a sequence of actions that contribute to achieving a specific goal. All of these methods are becoming increasingly popular in biomedical research in quite diverse areas including drug design, stratification of patients, medical images analysis, molecular interactions, prediction of therapy outcomes and many more. We describe several supervised and unsupervised ML techniques, and illustrate a series of prototypical examples using state-of-the-art computational approaches. Given the complexity of reinforcement learning, it is not discussed in detail here, instead, interested readers are referred to excellent reviews on that topic. We focus on concepts rather than procedures, as our goal is to attract the attention of researchers in biomedicine toward the plethora of powerful ML methods and their potential to leverage basic and applied research programs.

20.
Methods Mol Biol ; 2162: 197-213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32926384

RESUMO

The CRISPR/Cas9 system has transformed how gene knockout and knock-in studies are performed in the lab, and it is poised to revolutionize medicine. However, one of the present limitations of this technology is its imperfect specificity. While CRISPR/Cas9 can be programmed to cut a specific DNA target sequence with relative precision, off-target sequence cleavage can occur in large genomes. Importantly, several techniques have recently been developed to measure CRISPR/Cas9 on- and off-target DNA cleavage in cells. Here, we present detailed protocols for evaluating the specificity of CRISPR/Cas9 and related systems in cells using both targeted-approaches, in which off-target sites are known a priori, and unbiased approaches which are able to identify off-target cleavage events throughout an entire genome. Together, these techniques can be used to assess the reliability of experimental models generated using CRISPR/Cas9 as well as the safety of therapeutics employing this technology.


Assuntos
Proteína 9 Associada à CRISPR/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Clivagem do DNA , Genoma/genética , Humanos , RNA Guia de Cinetoplastídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA