Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1486, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374074

RESUMO

Atomic monolayers on semiconductor surfaces represent an emerging class of functional quantum materials in the two-dimensional limit - ranging from superconductors and Mott insulators to ferroelectrics and quantum spin Hall insulators. Indenene, a triangular monolayer of indium with a gap of ~ 120 meV is a quantum spin Hall insulator whose micron-scale epitaxial growth on SiC(0001) makes it technologically relevant. However, its suitability for room-temperature spintronics is challenged by the instability of its topological character in air. It is imperative to develop a strategy to protect the topological nature of indenene during ex situ processing and device fabrication. Here we show that intercalation of indenene into epitaxial graphene provides effective protection from the oxidising environment, while preserving an intact topological character. Our approach opens a rich realm of ex situ experimental opportunities, priming monolayer quantum spin Hall insulators for realistic device fabrication and access to topologically protected edge channels.

2.
Small ; : e2304118, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438619

RESUMO

Molybdenum carbides are promising low-cost electrocatalysts for electrolyzers, fuel cells, and batteries. However, synthesis of ultrafine, phase-pure carbide nanoparticles (diameter < 5 nm) with large surface areas remains challenging due to uncontrollable agglomeration that occurs during traditional high temperature syntheses. This work presents a scalable, physical approach to synthesize molybdenum carbide nanoparticles at room temperature by ion implantation. By tuning the implantation conditions, various molybdenum carbide phases, stoichiometries, and nanoparticle sizes can be accessed. For instance, molybdenum ion implantation into glassy carbon at 30 keV energy and to a fluence of 9 × 1016 at cm-2 yields a surface η-Mo3 C2 with a particle diameter of (10 ± 1) nm. Molybdenum implantation into glassy carbon at 60 keV to a fluence of 6 × 1016 at cm-2 yields a buried layer of ultrafine γ'-MoC/η-MoC nanoparticles. Carbon ion implantation at 20 keV into a molybdenum thin film produces a 40 nm thick layer primarily composed of ß-Mo2 C. The formation of nanoparticles in each molybdenum carbide phase is explained based on the Mo-C phase diagram and Monte-Carlo simulations of ion-solid interactions invoking the thermal spike model. The approaches presented are widely applicable for synthesis of other transition metal carbide nanoparticles as well.

3.
Materials (Basel) ; 14(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34576679

RESUMO

Ironsand is an abundant and inexpensive magnetic mineral resource. However, the magnetic properties of unprocessed ironsand are often inadequate for any practical applications. In this work, the applicability of ironsand for use as a component in a soft magnetic composite for large-scale inductive power transfer applications was investigated. After magnetic separation, the chemical, structural and magnetic properties of ironsand sourced from different locations were compared. Differences observed in the DC magnetic properties were consistent with changes in the chemical compositions obtained from X-ray Absorption Near-Edge Spectroscopy (XANES), which suggests varying the titanohematite to titanomagnetite content. Increased content in titanomagnetite and magnetic permeability correlated well with the total Fe content in the materials. The best-performing ironsand with the highest permeability and lowest core losses was used alongside Mn,Zn-Ferrite particles (ranging from ∼100 µm to 2 mm) to fabricate toroid cores with varying magnetic material loading. It was shown that ironsand can be used to replace up to 15 wt.% of the magnetic materials with minimal impact on the composite magnetic performance, thus reducing the cost. Ironsand was also used as a supporting material in a single-rail wireless power transfer system, effectively increasing the power transfer, demonstrating potential applications to reduce flux leakage.

4.
J Chem Phys ; 152(4): 044715, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32007066

RESUMO

In this work, ambient pressure x-ray photoelectron spectroscopy (APXPS) is used to study the initial stages of water adsorption on vanadium oxide surfaces. V 2p, O 1s, C 1s, and valence band XPS spectra were collected as a function of relative humidity in a series of isotherm and isobar experiments. Experiments were carried out on two VO2 thin films on TiO2 (100) substrates, prepared with different surface cleaning procedures. Hydroxyl and molecular water surface species were identified, with up to 0.5 ML hydroxide present at the minimum relative humidity, and a consistent molecular water adsorption onset occurring around 0.01% relative humidity. The work function was found to increase with increasing relative humidity, suggesting that surface water and hydroxyl species are oriented with the hydrogen atoms directed away from the surface. Changes in the valence band were also observed as a function of relative humidity. The results were similar to those observed in APXPS experiments on other transition metal oxide surfaces, suggesting that H2O-OH and H2O-H2O surface complex formation plays an important role in the oxide wetting process and water dissociation. Compared to polycrystalline vanadium metal, these vanadium oxide films generate less hydroxide and appear to be more favorable for molecular water adsorption.

5.
Small ; 16(12): e1903321, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31489781

RESUMO

Transparent conducting oxides (TCO) have integral and emerging roles in photovoltaic, thermoelectric energy conversion, and more recently, photocatalytic systems. The functional properties of TCOs, and thus their role in these applications, are often mediated by the bulk electronic band structure but are also strongly influenced by the electronic structure of the native surface 2D electron gas (2DEG), particularly under operating conditions. This study investigates the 2DEG, and its response to changes in chemistry, at the (111) surface of the model TCO In2 O3 , through angle resolved and core level X-ray photoemission spectroscopy. It is found that the itinerant charge carriers of the 2DEG reside in two quantum well subbands penetrating up to 65 Å below the surface. The charge carrier concentration of this 2DEG, and thus the high surface n-type conductivity, emerges from donor-type oxygen vacancies of surface character and proves to be remarkably robust against surface absorbents and contamination. The optical transparency, however, may rely on the presence of ubiquitous surface adsorbed oxygen groups and hydrogen defect states that passivate localized oxygen vacancy states in the bandgap of In2 O3 .

6.
Nano Lett ; 17(12): 7339-7344, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29111764

RESUMO

The unique electronic band structure of indium nitride InN, part of the industrially significant III-N class of semiconductors, offers charge transport properties with great application potential due to its robust n-type conductivity. Here, we explore the water sensing mechanism of InN thin films. Using angle-resolved photoemission spectroscopy, core level spectroscopy, and theory, we derive the charge carrier density and electrical potential of a two-dimensional electron gas, 2DEG, at the InN surface and monitor its electronic properties upon in situ modulation of adsorbed water. An electric dipole layer formed by water molecules raises the surface potential and accumulates charge in the 2DEG, enhancing surface conductivity. Our intuitive model provides a novel route toward understanding the water sensing mechanism in InN and, more generally, for understanding sensing material systems beyond InN.

7.
Phys Chem Chem Phys ; 18(46): 31958-31965, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27844065

RESUMO

Doped BiVO4 is a promising photoelectrochemical water splitting anode, whose activity is hampered by poor charge transport. Here we use a set of X-ray spectroscopic methods to probe the origin and nature of localized electron states in W:BiVO4. Furthermore, using the polarized nature of the X-rays, we probe variations in the electronic structure along the crystal axes. In this manner, we reveal aspects of the electronic structure related to electron localization and observations consistent with conductivity anisotropy between the ab-plane and c-axis. We verify that tungsten substitutes as W6+ for V5+ in BiVO4. This is shown to result in the presence of inter-band gap states related to electrons at V4+ sites of e symmetry. The energetic position of the states in the band gap suggest that they are highly localized and may act as recombination centres. Polarization dependent X-ray absorption spectra reveal anisotropy in the electronic structure between the ab-plane and c-axis. Results show the superior hybridization between V 3d and O 2p states, higher V wavefunction overlap and broader conduction bands in the ab-plane than in the c-axis. These insights into the electronic structure are discussed in the context of existing experimental and theoretical reports regarding charge transport in BiVO4.

8.
ChemSusChem ; 8(15): 2551-9, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26105614

RESUMO

The mixed-phase nature of P25 TiO2 (85 % anatase/15 % rutile) plays a key role in the high H2 production rates shown by Au/P25 TiO2 photocatalysts in alcohol/water systems. However, a full understanding of the synergistic charge transfer mechanisms between the TiO2 polymorphs that drive the high rates is yet to be realised. Here, we deconstruct P25 TiO2 into its component phases, functionalise the phases with Au nanoparticles and explore charge transfer in Au/TiO2 systems using EPR spectroscopy. EPR spectroscopy and photocatalytic data provide direct evidence that electrons excited across the rutile band gap move to anatase lattice traps through interfacial surface sites, which decreases electron-hole pair recombination and increases charge carrier availability for photoreactions. In particular, three-phase interfacial sites between Au, anatase and rutile appear to be H2 evolution "hot spots". The results isolate the origin of high photocatalytic H2 production rates seen in Au/P25 TiO2 systems.


Assuntos
Ouro/química , Hidrogênio/química , Nanopartículas Metálicas/química , Titânio/química , Titânio/efeitos da radiação , Raios Ultravioleta , Catálise , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA