Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1115485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025603

RESUMO

Virtual Touch Tissue Quantification (VTQ) offers several advantages in the diagnosis of various lung diseases. Chemokine expression levels, such as CXCL13, play a vital role in the occurrence and development of tumors and aid in the diagnosis process. The purpose of this study was to evaluate the combined value of VTQ and changes in CXCL13 expression levels for the diagnosis of lung tumors. A total of 60 patients with thoracic nodules and pleural effusion were included, with 30 of them having malignant pleural effusion (based on pathology) and the remaining 30 having benign thoracic nodules and pleural effusion. The relative expression level of CXCL13 was measured in the collected pleural effusions using Enzyme-Linked Immunosorbent Assay (ELISA). The relationship between CXCL13 expression levels and various clinical features was analyzed. A Receiver Operating Characteristic (ROC) curve analysis was conducted on the VTQ results and relative expression levels of CXCL13, and the areas under the curve, critical values, sensitivity, and specificity were calculated. Multivariate analysis incorporating multiple indicators was performed to determine the accuracy of lung tumor diagnosis. The results showed that the expression levels of CXCL13 and VTQ were significantly higher in the lung cancer group compared to the control group (P < 0.05). In the Non-Small Cell Lung Cancer (NSCLC) group, CXCL13 expression levels increased with later TNM staging and poorer tumor differentiation. The expression level of CXCL13 in adenocarcinoma was higher than that in squamous cell carcinoma. The ROC curve analysis revealed that CXCL13 had an area under the curve (AUC) of 0.74 (0.61, 0.86) with an optimal cut-off value of 777.82 pg/ml for diagnosing lung tumors. The ROC curve analysis of VTQ showed an AUC of 0.67 (0.53, 0.82) with a sensitivity of 60.0% and a specificity of 83.3%, and an optimal diagnostic cut-off of 3.33 m/s. The combination of CXCL13 and VTQ for diagnosing thoracic tumors had an AUC of 0.842 (0.74, 0.94), which was significantly higher than either factor alone. The results of the study demonstrate the strong potential of combining VTQ results with chemokine CXCL13 expression levels for lung tumor diagnosis. Additionally, the findings suggest that elevated relative expression of CXCL13 in cases of malignant pleural effusion caused by non-small cell lung cancer may indicate a poor prognosis. This provides promising potential for using CXCL13 as a screening tool and prognostic indicator for patients with advanced lung cancer complicated by malignant pleural effusion.

2.
Polymers (Basel) ; 15(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679208

RESUMO

A novel superhydrophilic and underwater superoleophobic modified PVDF membrane for oil/water separation was fabricated through a modified blending approach. Pluronic F127 and amphiphilic copolymer P (MMA-AA) were directly blended with PVDF as a hydrophilic polymeric additive to prepare membranes via phase inversion induced by immersion precipitation. Then, the as-prepared microfiltration membranes were annealed at 160 °C for a short time and quenched to room temperature. The resultant membranes exhibited contact angles of hexane larger than 150° no matter whether in an acidic or basic environment. For 1, 2-dichloroethane droplets, the membrane surface showed a change from superoleophilic to superoleophobic under water with aqueous solutions with pH values from 2 to 13. This as-prepared membrane has good mechanical strength and can then be applied for oil and water mixture separation.

3.
Macromol Rapid Commun ; 42(14): e2100176, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34121258

RESUMO

The 4D-printing technology is applied to fabricate a shape memory peripheral stent with good biocompatibility, which sustains long-term drug release. The star polymer s-PCL is prepared by ring opening polymerization of ε-caprolactone with the -OH of ß-cyclodextrin (ßCD) as initiator, and then the s-PCL is modified with acrylate endgroup which allows the polymerization under UV light to form the crosslinking network c-PCL. Attributed to the feature of the high crosslinked structure and chemical nature of polycaprolactone (PCL) and ßCD, the composite exhibits appropriate tensile strength and sufficient elasticity and bursting pressure, and it is comparable with great saphenous vein in human body. The radial support of the 4D-printed stent is 0.56 ± 0.11 N and is equivalent to that of commercial stent. The cell adhesion and proliferation results show a good biocompatibility of the stent with human umbilical vein endothelial cells. Due to the presence of ßCD, the wettability and biocompatibility of the materials are improved, and the sustained paclitaxel release based on the host-guest complexion shows the potential of the drug-loaded stent for long-term release. This study provides a new strategy to solve the urgent need of small-diameter scaffolds to treat critical limb ischemia.


Assuntos
Células Endoteliais , beta-Ciclodextrinas , Materiais Biocompatíveis , Humanos , Poliésteres , Impressão Tridimensional , Stents
4.
ACS Appl Mater Interfaces ; 13(19): 23011-23019, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33970619

RESUMO

Remote controllability and multiple-shape memory performance are two important functions for shape memory polymers (SMPs) in engineering applications, which are still a challenge to achieve via a facile approach. Herein, we synthesized a shape memory composite with near-infrared (NIR) light-induced triple-shape memory performance by in situ formation of iron tannate (FeTA) nanoparticles in cross-linked poly(ethylene-co-vinyl alcohol) (EVOH). EVOH possessed two transition temperatures enabling the composites with triple-shape memory behavior, while FeTA nanoparticles served as the photothermal conversion factor for NIR light-induced responsiveness. Because the light-induced triple-shape memory performance of the composite is highly dependent on its photothermal conversion property, the control of FeTA doping would also be an effective solution to prepare light-induced multiple-SMPs with various shape transformations. Moreover, the composites exhibited high light-driving recovery stress, which could lift burdens 1600 times heavier than their own weight, indicating their great potential as a smart soft actuator for various applications.

5.
Carbohydr Polym ; 230: 115665, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887949

RESUMO

Electrospinning of pure alginate or derivatives has always been a pursuing goal in biological fields in recent years owing to its fascinating biological characteristics and biomimetic structures. Yet it is still a severe challenge in view of its insufficient entanglements and strong electrostatic repulsions. Herein, alginate dialdehyde (ADA) with improved and adjustable chain flexibility was prepared via periodate-oxidation. Chain flexibility, concentration, ethanol and crosslinkers played key roles in electrospinning proved by persistence length (lp), the number of entanglement points (ne) and fiber morphology. Finally, insoluble ADA corsslinked nanofiber membranes were obtained, which exhibited excellent mechanical properties and adjustable degradability. Specially, biocompatibility assays confirmed that the preparing membranes were noncytotoxic, and could promote cell attachment and proliferation. Therefore, under the guidance of the relationship between chain flexibility and electrospinnability, pure alginate-based nanofiber membranes are expected to become promising scaffolds for biomedical applications, particularly for wound healing which demanding appropriate degradation.


Assuntos
Alginatos/química , Materiais Biocompatíveis/química , Nanofibras/química , Células 3T3 , Animais , Camundongos , Engenharia Tecidual/métodos , Alicerces Teciduais
6.
Polymers (Basel) ; 11(6)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167380

RESUMO

Halloysite nanotubes (HNTs), novel 1D natural materials with a unique tubular nanostructure, large aspect ratio, biocompatibility, and high mechanical strength, are promising nanofillers to improve the properties of polymers. In this review, we summarize the recent progress toward the development of polysaccharide-HNTs composites, paying attention to the main existence forms and wastewater treatment application particularly. The purification of HNTs and fabrication of the composites are discussed first. Polysaccharides, such as alginate, chitosan, starch, and cellulose, reinforced with HNTs show improved mechanical, thermal, and swelling properties. Finally, we summarize the unique characteristics of polysaccharide-HNTs composites and review the recent development of the practical applications.

7.
Carbohydr Polym ; 205: 125-134, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446087

RESUMO

Herein, the three kinds of water-insoluble alginate-based nanofiber membranes were prepared by electrospinning and followed with crosslinking by calcium chloride (CaCl2), glutaraldehyde vapor (GA), and trifluoroacetic acid (TFA) crosslinking, respectively. All the sodium alginate(SA) nanofiber membranes present excellent integrated adsorption performance toward methylene blue (MB). Among these, CaCl2 crosslinked SA membranes exhibit the maximum actual adsorption capacity of 2230 mg/g and shortest adsorption equilibrium time of 50 min to date. On the basis of the selective adsorption of SA, the nanofiber membranes can separate MB/ methyl orange (MO) mixture solution and maintain high separation efficiency even after five cycles. In addition, respective applicable condition for differentially crosslinked SA nanofiber membranes was evaluated. The TFA crosslinked membranes have the least reduction in the adsorption capacity in acidic environment and GA crosslinked membranes adsorb better in alkaline environment. For seawater environment, GA crosslinked membranes show obvious adsorption performance than other crosslinked membranes.

8.
J Colloid Interface Sci ; 434: 175-80, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25203908

RESUMO

Functional terpolymer of poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid) (P(MMA-HEMA-AA)) was synthesized via a radical polymerization method. The terpolymer could be directly blended with poly(vinylidene fluoride) (PVDF) to prepare the microfiltration (MF) membranes via phase separate process. The synthesized polymers were characterized by Fourier transform infrared (FTIR), the nuclear magnetic resonance proton spectra ((1)H NMR). The membrane had the typical asymmetric structure and the hydrophilic side chains tended to aggregate on the membrane surface. The surface enrichment of amphiphilic copolymer and morphology of MF membranes were characterized by Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) and scanning electron microscopy (SEM). The contact angle (CA) and water uptake were also tested to assess the hydrophilicity and wetting characteristics of the polymer surface. The water filtration properties were measured. It was found the modified membranes showed excellent pH-sensitivity and pH-reversibility behavior. Furthermore, the hydrophilicity of the blended membranes increased, and the membranes showed good protein antifouling property.

9.
ACS Appl Mater Interfaces ; 6(16): 13334-8, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25116799

RESUMO

The polymer-grafted magnetic composite particles have been synthesized and developed to harvest oil by use of their speical wettability. Different from gravity-driven oil-water separation, the prepared polymer brushes-grafted magnetic composite particles can act as solid-stabilizers that diffuse to the oil-water interfical region and effectively minimize the direct oil-water interfical area by volume exclusion, whereas the magnetic Fe3O4 core allows easy separation of Pickering emulsions from oil-water mixture under an external magnetic field. When the emulsions were heated from room temperature to 50 °C, the coil-to-globule transition of poly(N-isopropylacrylamide) (PNIPAM) acts as the driving force for the destabilization of the emulsion, thereby achieving the release of oil. The novel materials can be used in aspects of oil-water separation, inducing oil droplet transport and release of lipophilic substrates.

10.
J Colloid Interface Sci ; 404: 36-41, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23721831

RESUMO

The triblock copolymers with the majority phase comprising fluorinated polyimide and the minor phase consisting of poly (ε-caprolactone) (PCL) were synthesized through Diels-Alder reaction between PI-Maleimide and PCL-Furfuryl Amine. The chemical composition and structure of the copolymers were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). Films of the copolymers were spined and microphase-separation of the thin film was achieved by solvent annealing in N,N-dimethylformamide (DMF) vapor. The microphase-separation morphology was investigated by atomic force microscopy (AFM). Based on the microphase-separation structures, nanoporous fluorinated polyimide films were obtained after removal of the PCL block can removed via a retro-DA (Diels-Alder) reaction using a simple heating and immersing procedure. The nanoporous thin film was characterized by Transmission electron microscopy (TEM). The dielectric property of the nanoporous fluorinated polyimide films was investigated. It was found that the nanopores introduction could effectively reduce the dielectric constant from 2.82 of PI dense films to 2.10 of nanoporous PI films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA