Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 13198, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168229

RESUMO

Multiple myeloma (MM) is a hematological cancer resulting from accumulated abnormal plasma cells. Unfortunately, MM remains an incurable disease, as relapse is very common. Therefore, there is urgent need to develop new treatment options for MM. Radotinib is a novel anti-cancer drug, currently approved in South Korea for the treatment of chronic myeloid leukemia patients. Its mechanism of action involves inhibition of the tyrosine kinase Bcr-Abl and the platelet-derived growth factor receptor. Generally, the mechanism of inhibition of non-receptor tyrosine kinase c-Abl has played an essential role in the inhibition of cancer progression. However, little is known regarding the effects of the c-Abl inhibitor, radotinib on MM cells. In this study, we analyzed the effect of radotinib on multiple myeloma cells. Interestingly, radotinib caused apoptosis in MM cells including RPMI-8226, MM.1S, and IM-9 cells, even in the absence of c-kit expression in 2 of these lines. Radotinib treatment significantly increased the number Annexin V-positive cells and decreased the mitochondrial membrane potential in MM cells. Additionally, we observed that cytochrome C was localized in the cytosol of radotinib-treated MM cells. Moreover, radotinib decreased the expression of Bcl-2 and Bcl-xL, and increased the expression of Bax and Bak in MM cells. Furthermore, radotinib promoted caspase pathway activation by inducing the expression and activity of caspase-3, -7, and -9. Expression of cleaved PARP-1 was also increased by radotinib treatment in various MM cells. In addition, radotinib significantly suppressed MM cell growth in a xenograft animal model using RPMI-8226 cells, and killed ex vivo myeloma cells from patients. In conclusion, radotinib may play an important role as a candidate agent or chemosensitizer for the treatment of MM.


Assuntos
Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Mitocôndrias/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Pirazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Caspases/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/metabolismo
2.
PLoS One ; 16(2): e0247368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606781

RESUMO

Osteoporosis is a progressive systemic skeletal disease associated with decreased bone mineral density and deterioration of bone quality, and it affects millions of people worldwide. Currently, it is treated mainly using antiresorptive and osteoanabolic agents. However, these drugs have severe adverse effects. Cell replacement therapy using mesenchymal stem cells (MSCs) could serve as a treatment strategy for osteoporosis in the future. LIGHT (HVEM-L, TNFSF14, or CD258) is a member of the tumor necrosis factor superfamily. However, the effect of recombinant LIGHT (rhLIGHT) on osteogenesis in human bone marrow-derived MSCs (hBM-MSCs) is unknown. Therefore, we monitored the effects of LIGHT on osteogenesis of hBM-MSCs. Lymphotoxin-ß receptor (LTßR), which is a LIGHT receptor, was constitutively expressed on the surface of hBM-MSCs. After rhLIGHT treatment, calcium and phosphate deposition in hBM-MSCs, stained by Alizarin red and von Kossa, respectively, significantly increased. We performed quantitative real-time polymerase chain reaction to examine the expressions of osteoprogenitor markers (RUNX2/CBFA1 and collagen I alpha 1) and osteoblast markers (alkaline phosphatase, osterix/Sp7, and osteocalcin) and immunoblotting to assess the underlying biological mechanisms following rhLIGHT treatment. We found that rhLIGHT treatment enhanced von Kossa- and Alizarin red-positive hBM-MSCs and induced the expression of diverse differentiation markers of osteogenesis in a dose-dependent manner. WNT/ß-catenin pathway activation strongly mediated rhLIGHT-induced osteogenesis of hBM-MSCs, accelerating the differentiation of hBM-MSCs into osteocytes. In conclusion, the interaction between LIGHT and LTßR enhances osteogenesis of hBM-MSCs. Therefore, LIGHT might play an important role in stem cell therapy.


Assuntos
Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Células-Tronco Mesenquimais/citologia , Osteogênese , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Proteínas Recombinantes/farmacologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Via de Sinalização Wnt/efeitos dos fármacos
3.
BMC Cancer ; 20(1): 285, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252668

RESUMO

BACKGROUND: Leukemia stem cells (LSCs) in play an important role in the initiation, relapse, and progression of acute myeloid leukemia (AML), and in the development of chemotherapeutic drug resistance in AML. Studies regarding the detection of LSCs and the development of novel therapies for targeting them are extensive. The identification of LSCs and targeting therapies for them has been continuously under investigation. METHODS: We examined the levels of CD45dimCD34+CD38-CD133+ cells in bone marrow samples from patients with hematological malignancies and healthy controls, using four-color flow cytometry. RESULTS: Interestingly, the CD45dimCD34+CD38-CD133+ cells were highly expressed in the bone marrow of patients with AML compared to that in healthy controls (HC). Moreover, the proportions of CD45dimCD34+CD38-CD133+ cells were also examined in diverse hematological malignancies, including AML, CML, DLBCL, MM, MDS, HL, ALL, and CLL. LSCs were prominently detected in the BMCs isolated from patients with AML and CML, but rarely in BMCs isolated from patients with DLBCL, MM, MDS, ALL, CLL, and HL. Additionally, the high CD45dimCD34+CD38-CD133+ cell counts in AML patients served as a significantly poor risk factor for overall and event free survival. CONCLUSIONS: Therefore, our results suggest that CD45dimCD34+CD38-CD133+ cells in AML might potentially serve as LSCs. In addition, this cell population might represent a novel therapeutic target in AML.


Assuntos
Antígeno AC133/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , Antígenos CD34/metabolismo , Medula Óssea/patologia , Leucemia Mieloide Aguda/patologia , Antígenos Comuns de Leucócito/metabolismo , Glicoproteínas de Membrana/metabolismo , Células-Tronco Neoplásicas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Medula Óssea/metabolismo , Feminino , Citometria de Fluxo/métodos , Humanos , Imunofenotipagem/métodos , Leucemia Mieloide Aguda/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida
4.
Tumour Biol ; 41(5): 1010428319848612, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31074363

RESUMO

Aurora kinases play critical roles in regulating several processes pivotal for mitosis. Radotinib, which is approved in South Korea as a second-line treatment for chronic myeloid leukemia, inhibits the tyrosine kinase BCR-ABL and platelet-derived growth factor receptor. However, the effects of radotinib on Aurora kinase expression in acute myeloid leukemia are not well studied. Interestingly, the cytotoxicity of acute myeloid leukemia cells was increased by radotinib treatment. Radotinib significantly decreased the expression of cyclin-dependent kinase 1 and cyclin B1, the key regulators of G2/M phase, and inhibited the expression of Aurora kinase A and Aurora kinase B in acute myeloid leukemia cells. In addition, radotinib decreased the expression and binding between p-Aurora kinase A and TPX2, which are required for spindle assembly. Furthermore, it reduced Aurora kinase A and polo-like kinase 1 phosphorylation and suppressed the expression of α-, ß-, and γ-tubulin in acute myeloid leukemia cells. Furthermore, radotinib significantly suppressed the key regulators of G2/M phase including cyclin B1 and Aurora kinase A in a xenograft animal model. Therefore, our results suggest that radotinib can abrogate acute myeloid leukemia cell growth both in vitro and in vivo and may serve as a candidate agent or a chemosensitizer for treating acute myeloid leukemia.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Benzamidas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/patologia , Mitose/efeitos dos fármacos , Pirazinas/farmacologia , Animais , Apoptose , Aurora Quinase A/metabolismo , Ciclo Celular , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Masculino , Camundongos , Camundongos Nus , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA