Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Prog Neurobiol ; 217: 102315, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35809761

RESUMO

Natural images comprise contours and boundaries defined by 1st-order luminance-modulated (LM) cues that are readily encoded by V1 neurons, and 2nd-order contrast-modulated (CM) cues that carry local, but not over-the-space, luminance changes. The neurophysiological foundations for CM processing remain unsolved. Here we used two-photon calcium imaging to demonstrate that V1 superficial-layer neurons respond to both LM and CM gratings in awake, fixating, macaques, with overall LM responses stronger than CM responses. Furthermore, adaptation experiments revealed that LM responses were similarly suppressed by LM and CM adaptation, with moderately larger effects by iso-orientation adaptation than by orthogonal adaptation, suggesting that LM and CM orientation responses likely share a strong orientation-non-selective subcortical origin. In contrast, CM responses were substantially more suppressed by iso-orientation than by orthogonal LM and CM adaptation, likely suggesting stronger orientation-specific intracortical influences for CM responses than for LM responses, besides shared orientation-non-selective subcortical influences. These results thus may indicate a subcortical-to-V1 filter-rectify-filter mechanism for CM processing: Local luminance changes in CM stimuli are initially encoded by orientation-non-selective subcortical neurons, and the outputs are half-wave rectified, and then summed by V1 neurons to signal CM orientation, which may be further substantially refined by intracortical influences.


Assuntos
Córtex Visual , Animais , Sensibilidades de Contraste , Sinais (Psicologia) , Macaca , Estimulação Luminosa/métodos , Córtex Visual/fisiologia
2.
Science ; 377(6602): eabo0924, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35737810

RESUMO

The human cerebral cortex houses 1000 times more neurons than that of the cerebral cortex of a mouse, but the possible differences in synaptic circuits between these species are still poorly understood. We used three-dimensional electron microscopy of mouse, macaque, and human cortical samples to study their cell type composition and synaptic circuit architecture. The 2.5-fold increase in interneurons in humans compared with mice was compensated by a change in axonal connection probabilities and therefore did not yield a commensurate increase in inhibitory-versus-excitatory synaptic input balance on human pyramidal cells. Rather, increased inhibition created an expanded interneuron-to-interneuron network, driven by an expansion of interneuron-targeting interneuron types and an increase in their synaptic selectivity for interneuron innervation. These constitute key neuronal network alterations in the human cortex.


Assuntos
Córtex Cerebral , Conectoma , Animais , Córtex Cerebral/ultraestrutura , Humanos , Interneurônios/ultraestrutura , Macaca , Camundongos , Células Piramidais/ultraestrutura
3.
Prog Neurobiol ; 212: 102251, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35182707

RESUMO

Humans perceive millions of colors along three dimensions of color space: hue, lightness, and chroma. A major gap in knowledge is where the brain represents these specific dimensions in cortex, and how they relate to each other. Previous studies have shown that brain areas V4 and the posterior inferotemporal cortex (PIT) are central to computing color dimensions. To determine the contribution of V1 to setting up these downstream processing mechanisms, we studied cortical color responses in macaques-who share color vision mechanisms with humans. We used two-photon calcium imaging at both meso- and micro-scales and found that hue and lightness are laid out in orthogonal directions on the cortical map, with chroma represented by the strength of neuronal responses, as previously shown in PIT. These findings suggest that the earliest cortical stages of vision determine the three primary dimensions of human color perception.


Assuntos
Encéfalo , Macaca , Animais , Cálcio , Humanos
4.
Prog Neurobiol ; 205: 102120, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252470

RESUMO

V1 neurons are functionally organized in orientation columns in primates. Whether spatial frequency (SF) columns also exist is less clear because mixed results have been reported. A definitive solution would be SF functional maps at single-neuron resolution. Here we used two-photon calcium imaging to construct first cellular SF maps in V1 superficial layers of five awake fixating macaques, and studied SF functional organization properties and neuronal tuning characteristics. The SF maps (850 × 850 µm2) showed weak horizontal SF clustering (median clustering index = 1.43 vs. unity baseline), about one sixth as strong as orientation clustering in the same sets of neurons, which argues against a meaningful orthogonal relationship between orientation and SF functional maps. These maps also displayed nearly absent vertical SF clustering between two cortical depths (150 & 300 µm), indicating a lack of SF columnar structures within the superficial layers. The underlying causes might be that most neurons were tuned to a narrow two-octave range of medium frequencies, and many neurons with different SF preferences were often spatially mixed, which disallowed finer grouping of SF tuning. In addition, individual SF tuning functions were often asymmetric, having wider lower frequency branches, which may help encode low SF information for later decoding.


Assuntos
Cálcio/metabolismo , Animais , Mapeamento Encefálico , Macaca , Orientação , Estimulação Luminosa , Córtex Visual , Vias Visuais
5.
Cereb Cortex ; 31(4): 2085-2097, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33279951

RESUMO

Orientation tuning is a fundamental response property of V1 neurons and has been extensively studied with single-/multiunit recording and intrinsic signal optical imaging. Long-term 2-photon calcium imaging allows simultaneous recording of hundreds of neurons at single neuron resolution over an extended time in awake macaques, which may help elucidate V1 orientation tuning properties in greater detail. We used this new technology to study the microstructures of orientation functional maps, as well as population tuning properties, in V1 superficial layers of 5 awake macaques. Cellular orientation maps displayed horizontal and vertical clustering of neurons according to orientation preferences, but not tuning bandwidths, as well as less frequent pinwheels than previous estimates. The orientation tuning bandwidths were narrower than previous layer-specific single-unit estimates, suggesting more precise orientation selectivity. Moreover, neurons tuned to cardinal and oblique orientations did not differ in quantities and bandwidths, likely indicating minimal V1 representation of the oblique effect. Our experimental design also permitted rough estimates of length tuning. The results revealed significantly more end-stopped cells at a more superficial 150 µm depth (vs. 300 µm), but unchanged orientation tuning bandwidth with different length tuning. These results will help construct more precise models of V1 orientation processing.


Assuntos
Cálcio/metabolismo , Orientação/fisiologia , Córtex Visual/metabolismo , Vias Visuais/metabolismo , Animais , Macaca , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Estimulação Luminosa/métodos
6.
Neuron ; 108(6): 1075-1090.e6, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33080229

RESUMO

Optogenetics has revolutionized neuroscience in small laboratory animals, but its effect on animal models more closely related to humans, such as non-human primates (NHPs), has been mixed. To make evidence-based decisions in primate optogenetics, the scientific community would benefit from a centralized database listing all attempts, successful and unsuccessful, of using optogenetics in the primate brain. We contacted members of the community to ask for their contributions to an open science initiative. As of this writing, 45 laboratories around the world contributed more than 1,000 injection experiments, including precise details regarding their methods and outcomes. Of those entries, more than half had not been published. The resource is free for everyone to consult and contribute to on the Open Science Framework website. Here we review some of the insights from this initial release of the database and discuss methodological considerations to improve the success of optogenetic experiments in NHPs.


Assuntos
Encéfalo , Neurônios , Optogenética/métodos , Primatas , Animais , Neurociências
7.
Nat Commun ; 11(1): 697, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019929

RESUMO

The integration of synaptic inputs onto dendrites provides the basis for neuronal computation. Whereas recent studies have begun to outline the spatial organization of synaptic inputs on individual neurons, the underlying principles related to the specific neural functions are not well understood. Here we perform two-photon dendritic imaging with a genetically-encoded glutamate sensor in awake monkeys, and map the excitatory synaptic inputs on dendrites of individual V1 superficial layer neurons with high spatial and temporal resolution. We find a functional integration and trade-off between orientation-selective and color-selective inputs in basal dendrites of individual V1 neurons. Synaptic inputs on dendrites are spatially clustered by stimulus feature, but functionally scattered in multidimensional feature space, providing a potential substrate of local feature integration on dendritic branches. Furthermore, apical dendrite inputs have larger receptive fields and longer response latencies than basal dendrite inputs, suggesting a dominant role for apical dendrites in integrating feedback in visual information processing.


Assuntos
Neurônios/fisiologia , Navegação Espacial , Animais , Dendritos/fisiologia , Potenciais Pós-Sinápticos Excitadores , Macaca , Modelos Neurológicos , Sinapses/fisiologia
8.
J Neurosci ; 39(42): 8267-8274, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619496

RESUMO

Novel genetically encoded tools and advanced microscopy methods have revolutionized neural circuit analyses in insects and rodents over the last two decades. Whereas numerous technical hurdles originally barred these methodologies from success in nonhuman primates (NHPs), current research has started to overcome those barriers. In some cases, methodological advances developed with NHPs have even surpassed their precursors. One such advance includes new ultra-large imaging windows on NHP cortex, which are larger than the entire rodent brain and allow analysis unprecedented ultra-large-scale circuits. NHP imaging chambers now remain patent for periods longer than a mouse's lifespan, allowing for long-term all-optical interrogation of identified circuits and neurons over timeframes that are relevant to human cognitive development. Here we present some recent imaging advances brought forth by research teams using macaques and marmosets. These include technical developments in optogenetics; voltage-, calcium- and glutamate-sensitive dye imaging; two-photon and wide-field optical imaging; viral delivery; and genetic expression of indicators and light-activated proteins that result in the visualization of tens of thousands of identified cortical neurons in NHPs. We describe a subset of the many recent advances in circuit and cellular imaging tools in NHPs focusing here primarily on the research presented during the corresponding mini-symposium at the 2019 Society for Neuroscience annual meeting.


Assuntos
Encéfalo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Neuroimagem/métodos , Neurônios/fisiologia , Animais , Mapeamento Encefálico , Microscopia de Fluorescência por Excitação Multifotônica , Optogenética , Primatas
9.
PLoS Biol ; 16(8): e2005839, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089111

RESUMO

Whereas optogenetic techniques have proven successful in their ability to manipulate neuronal populations-with high spatial and temporal fidelity-in species ranging from insects to rodents, significant obstacles remain in their application to nonhuman primates (NHPs). Robust optogenetics-activated behavior and long-term monitoring of target neurons have been challenging in NHPs. Here, we present a method for all-optical interrogation (AOI), integrating optical stimulation and simultaneous two-photon (2P) imaging of neuronal populations in the primary visual cortex (V1) of awake rhesus macaques. A red-shifted channel-rhodopsin transgene (ChR1/VChR1 [C1V1]) and genetically encoded calcium indicators (genetically encoded calmodulin protein [GCaMP]5 or GCaMP6s) were delivered by adeno-associated viruses (AAVs) and subsequently expressed in V1 neuronal populations for months. We achieved optogenetic stimulation using both single-photon (1P) activation of neuronal populations and 2P activation of single cells, while simultaneously recording 2P calcium imaging in awake NHPs. Optogenetic manipulations of V1 neuronal populations produced reliable artificial visual percepts. Together, our advances show the feasibility of precise and stable AOI of cortical neurons in awake NHPs, which may lead to broad applications in high-level cognition and preclinical testing studies.


Assuntos
Neurônios/fisiologia , Optogenética/métodos , Córtex Visual/fisiologia , Animais , Encéfalo/fisiologia , Cálcio/metabolismo , Dependovirus , Macaca mulatta , Estimulação Luminosa , Primatas , Rodopsina , Vigília
10.
Neurol Res ; 37(12): 1074-81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26923577

RESUMO

As the principal cell of the striatum, medium spiny neurons (MSNs) are closely associated with various motor dysfunctional diseases. In this paper, we describe an electric compartment model constructed in NEURON with a realistic morphology. Based on a 554-compartment computational model, we researched the influence of external current stimuli, different ions conductance, and the removal of partial dendrites on the physiological properties of the MSN. The main results are the following: (1) in the case of external current stimuli, various firing patterns appear in the MSN and the model produces a clear period-adding bifurcation phenomenon; (2) the effect of distinct types of ion channels vary and significant differences in discharge rhythm exist even among ion channels of the same type; (3) the closer the removed dendrite was to the soma, the larger the impact this had on the discharge pattern of the MSN.


Assuntos
Potenciais de Ação/fisiologia , Corpo Estriado/citologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Fenômenos Biofísicos/fisiologia , Biofísica , Simulação por Computador , Dendritos/fisiologia , Estimulação Elétrica , Humanos , Canais Iônicos/fisiologia , Neurônios/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA