Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 2): 127790, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926305

RESUMO

Growing concerns regarding plastic waste have prompted various attempts to replace plastic packaging films with biodegradable alternatives such as poly(lactic acid) (PLA). However, their low hydrolysis resistance owing to the presence of aliphatic polyesters limits the shelf life of biodegradable polymers. Hydrolysis leads to the deterioration of mechanical performance, which is a key disadvantage of biodegradable plastics. In this study, a layer-by-layer (LBL) assembly method was used for the dip-coating of biorenewable, biodegradable nanocellulose/nanochitin on the PLA surface. Additional crosslinking and compression of the coated nanofibers, each containing carboxylic acid and amine groups, respectively, were induced through electromagnetic microwave irradiation to protect the PLA film by improving hydrolysis resistance. The coatings were examined by morphological observations and water contact angle measurements. The LBL coatings of differently charged nanofibers of 10.6 µm were reduced to 40 % after microwave treatment, and the thickness does not vary after the hydrolysis experiment. Microwave irradiation increased the water contact angle owing to amide linkage formation, thereby preventing the peeling off of coating layers. Improved hydrolysis resistance inhibited the reduction in molecular weight and tensile strength. These findings could be used to develop sustainable and biodegradable plastic packaging films with a prolonged shelf life.


Assuntos
Embalagem de Alimentos , Poliésteres , Hidrólise , Embalagem de Alimentos/métodos , Água
2.
ChemSusChem ; 12(14): 3236-3242, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31081284

RESUMO

Well-known hard-template methods for nitrogen (N)-doped chiral carbon nanomaterials require complicated construction and removal of the template, high-temperature pyrolysis, harsh chemical treatments, and additional N-doping processes. If naturally occurring chiral nematic chitin nanostructures [(C8 H13 NO5 )n ] in exoskeletons were wholly transformed into an N-doped carbon, this would be an efficient and sustainable method to obtain a useful chiral nanomaterial. Here, a simple, sacrificial-template-free, and environmentally mild method was developed to produce an N-doped chiral nematic carbon-sheath nanofibril hydrogel with a surface area >300 m2 g-1 and enantioselective properties from renewable chitin biomass. Calcium-saturated methanol physically exfoliated bulk chitin and produced a chiral nematic nanofibril hydrogel. Hydrothermal treatment of the chiral chitin hydrogel at 190 °C produced an N-doped chiral carbon-sheath nanofibril hydrogel without N-doping. This material preferentially adsorbed d-lactic acid over l-lactic acid and produced 16.3 % enantiomeric excess of l-lactic acid from a racemic mixture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA