Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113965, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38492217

RESUMO

G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibits stress granule assembly and interacts with G3BP1/2 via an ITFG motif, including residue F17, in the N protein. Prior studies examining the impact of the G3PB1-N interaction on SARS-CoV-2 replication have produced inconsistent findings, and the role of this interaction in pathogenesis is unknown. Here, we use structural and biochemical analyses to define the residues required for G3BP1-N interaction and structure-guided mutagenesis to selectively disrupt this interaction. We find that N-F17A mutation causes highly specific loss of interaction with G3BP1/2. SARS-CoV-2 N-F17A fails to inhibit stress granule assembly in cells, has decreased viral replication, and causes decreased pathology in vivo. Further mechanistic studies indicate that the N-F17-mediated G3BP1-N interaction promotes infection by limiting sequestration of viral genomic RNA (gRNA) into stress granules.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , DNA Helicases/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Virulência , RNA Guia de Sistemas CRISPR-Cas , Proteínas do Nucleocapsídeo , Replicação Viral , RNA Viral/genética
2.
Chemistry ; 30(14): e202304012, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38133488

RESUMO

Cerium oxide nanoparticles (CNPs) have recently gained increasing interest as redox enzyme-mimetics to scavenge the intracellular excess of reactive oxygen species, including hydrogen peroxide (H2 O2 ). Despite the extensive exploration, there remains a notable discrepancy regarding the interpretation of observed redshift of UV-Visible spectroscopy due to H2 O2 addition and the catalase-mimicking mechanism of CNPs. To address this question, we investigated the reaction mechanism by taking a closer look at the reaction intermediate during the catalase mimicking reaction. In this study, we present evidence demonstrating that in aqueous solutions, H2 O2 adsorption at CNP surface triggers the formation of stable intermediates known as cerium-peroxo (Ce-O2 2- ) and/or cerium-hydroperoxo (Ce-OOH- ) complexes as resolved by Raman scattering and UV-Visible spectroscopy. Polymer coating presents steric hinderance for H2 O2 accessibility to the solid-liquid interface limiting further intermediate formation. We demonstrate in depth that the catalytic reactivity of CNPs in the H2 O2 disproportionation reaction increases with the Ce(III)-fraction and decreases in the presence of polymer coatings. The developed approach using UV-Visible spectroscopy for the characterization of the surface peroxide species can potentially serve as a foundation for determining the catalytic reactivity of CNPs in the disproportionation of H2 O2 .

3.
Langmuir ; 39(37): 13197-13211, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37676039

RESUMO

The current methods of constructing modification strategies for hydrophilic membranes are time-consuming, complex in operation, and poor in universality, which limit their application on membranes. In this work, inspired by the adhesion properties and versatility of caffeic acid (CA) and p-phenylenediamine (PPDA), a simple, rapid, and universal method was designed for the separation of oil-in-water emulsion by preparing a stable hydrophilic coating separation membrane. The preparation time of the membrane was shortened to 40 min. The developed PVDF-PCA/PPDA membrane showed superhydrophilic and underwater superoleophobic properties. When applied to petroleum ether-in-water emulsion, isooctane-in-water emulsion, and dodecane-in-water emulsion separation, the oil rejection was more than 99.0%. In the circulating separation of 10 g/L soybean oil-in-water emulsion, the oil rejection was more than 99.3%, and the highest flux was 1036 L·m-2·h-1. The prepared PVDF-PCA/PPDA membrane performed well in the separation test of oily wastewater. The proposed strategy is simple and rapid; it may become a universal method for preparing membranes with super strong antifouling properties against viscous oil and accelerate the research progress of membrane separation of oil-in-water emulsions.

4.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425880

RESUMO

G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. G3BP1/2 are prominent interactors of the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the functional consequences of the G3BP1-N interaction in the context of viral infection remain unclear. Here we used structural and biochemical analyses to define the residues required for G3BP1-N interaction, followed by structure-guided mutagenesis of G3BP1 and N to selectively and reciprocally disrupt their interaction. We found that mutation of F17 within the N protein led to selective loss of interaction with G3BP1 and consequent failure of the N protein to disrupt stress granule assembly. Introduction of SARS-CoV-2 bearing an F17A mutation resulted in a significant decrease in viral replication and pathogenesis in vivo, indicating that the G3BP1-N interaction promotes infection by suppressing the ability of G3BP1 to form stress granules.

5.
mBio ; 14(4): e0137323, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37439567

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent causing the global pandemic of COVID-19. SARS-CoV-2 genome encodes a main protease (nsp5, also called Mpro) and a papain-like protease (nsp3, also called PLpro), which are responsible for processing viral polyproteins to assemble a functional replicase complex. In this study, we found that Mpro of SARS-CoV-2 can cleave human MAGED2 and other mammalian orthologs at Gln-263. Moreover, SARS-CoV and MERS-CoV Mpro can also cleave human MAGED2, suggesting MAGED2 cleavage by Mpro is an evolutionarily conserved mechanism of coronavirus infection in mammals. Intriguingly, Mpro from Beta variant cleaves MAGED2 more efficiently than wild type, but Omicron Mpro is opposite. Further studies show that MAGED2 inhibits SARS-CoV-2 infection at viral replication step. Mechanistically, MAGED2 is associated with SARS-CoV-2 nucleocapsid protein through its N-terminal region in an RNA-dependent manner, and this disrupts the interaction between SARS-CoV-2 nucleocapsid protein and viral genome, thus inhibiting viral replication. When MAGED2 is cleaved by Mpro, the N-terminal of MAGED2 will translocate into the nucleus, and the truncated MAGED2 is unable to suppress SARS-CoV-2 replication. This work not only discovers the antiviral function of MAGED2 but also provides new insights into how SARS-CoV-2 Mpro antagonizes host antiviral response. IMPORTANCE Host factors that restrict severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remain elusive. Here, we found that MAGED2 can be cleaved by SARS-CoV-2 main protease (Mpro) at Gln-263. SARS-CoV and MERS-CoV Mpro can also cleave MAGED2, and MAGED2 from multiple species can be cleaved by SARS-CoV-2 Mpro. Mpro from Beta variant cleaves MAGED2 more efficiently efficiently than wild type, but Omicron is the opposite. MAGED2 depletion enhances SARS-CoV-2 infection, suggesting its inhibitory role in SARS-CoV-2 infection. Mechanistically, MAGED2 restricts SARS-CoV-2 replication by disrupting the interaction between nucleocapsid and viral genomes. When MAGED2 is cleaved, its N-terminal will translocate into the nucleus. In this way, Mpro relieves MAGED2' inhibition on viral replication. This study improves our understanding of complex viral-host interaction and provides novel targets to treat SARS-CoV-2 infection.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , Antivirais/farmacologia , SARS-CoV-2 , Proteases 3C de Coronavírus , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Proteínas do Nucleocapsídeo , Mamíferos , Antígenos de Neoplasias , Proteínas Adaptadoras de Transdução de Sinal
6.
PLoS Pathog ; 19(6): e1011434, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37276230

RESUMO

Hepatitis E virus (HEV) is one of the main pathogenic agents of acute hepatitis in the world. The mechanism of HEV replication, especially host factors governing HEV replication is still not clear. Here, using HEV ORF1 trans-complementation cell culture system and HEV replicon system, combining with stable isotope labelling with amino acids in cell culture (SILAC) and mass spectrometry (MS), we aimed to identify the host factors regulating HEV replication. We identified a diversity of host factors associated with HEV ORF1 protein, which were putatively responsible for viral genomic RNA replication, in these two cell culture models. Of note, the protein arginine methyltransferase 5 (PRMT5)/WDR77 complex was identified in both cell culture models as the top hit. Furthermore, we demonstrated that PRMT5 and WDR77 can specifically inhibit HEV replication, but not other viruses such as HCV or SARS-CoV-2, and this inhibition is conserved among different HEV strains and genotypes. Mechanistically, PRMT5/WDR77 can catalyse methylation of ORF1 on its R458, impairing its replicase activity, and virus bearing R458K mutation in ORF1 relieves the restriction of PRMT5/WDR77 accordingly. Taken together, our study promotes more comprehensive understanding of viral infections but also provides therapeutic targets for intervention.


Assuntos
Vírus da Hepatite E , Hepatite E , Humanos , COVID-19 , Vírus da Hepatite E/genética , Proteína-Arginina N-Metiltransferases/genética , SARS-CoV-2 , Replicação Viral/fisiologia
7.
Langmuir ; 39(23): 8141-8152, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37236227

RESUMO

Functional polymers, such as poly(ethylene glycol) (PEG), terminated with a single phosphonic acid, hereafter PEGik-Ph are often applied to coat metal oxide surfaces during post-synthesis steps but are not sufficient to stabilize sub-10 nm particles in protein-rich biofluids. The instability is attributed to the weak binding affinity of post-grafted phosphonic acid groups, resulting in a gradual detachment of the polymers from the surface. Here, we assess these polymers as coating agents using an alternative route, namely, the one-step wet-chemical synthesis, where PEGik-Ph is introduced with cerium precursors during the synthesis. Characterization of the coated cerium oxide nanoparticles (CNPs) indicates a core-shell structure, where the cores are 3 nm cerium oxide and the shell consists of functionalized PEG polymers in a brush configuration. Results show that CNPs coated with PEG1k-Ph and PEG2k-Ph are of potential interest for applications as nanomedicines due to their high Ce(III) content and increased colloidal stability in cell culture media. We further demonstrate that the CNPs in the presence of hydrogen peroxide show an additional absorbance band in the UV-vis spectrum, which is attributed to Ce-O22- peroxo-complexes and could be used in the evaluation of their catalytic activity for scavenging reactive oxygen species.

8.
Adv Exp Med Biol ; 1417: 141-157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223864

RESUMO

Hepatitis E virus (HEV) infects over 20 million people worldwide per year, leading to 30,000-40,000 deaths. In most cases HEV infection in a self-limited, acute illness. However, chronic infections could occur in immunocompromised individuals. Due to scarcity of robust cell culture models in vitro and genetic tractable animal models in vivo, the details of HEV life cycle, as well as its interaction with host cells still remain elusive, which dampens antivirals discovery. In this chapter, we present an update in the HEV infectious cycle steps: entry, genome replication/subgenomic RNA transcription, assembly, and release. Moreover, we discussed the future prospective on HEV research and illustrates important questions urgently to be addressed.


Assuntos
Vírus da Hepatite E , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Técnicas de Cultura de Células , Vírus da Hepatite E/genética , Hospedeiro Imunocomprometido , Estágios do Ciclo de Vida , RNA Subgenômico/genética
9.
Cell Discov ; 9(1): 43, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080957

RESUMO

Animal models play crucial roles in the rapid development of vaccines/drugs for the prevention and therapy of COVID-19, but current models have some deficits when studying the pathogenesis of SARS-CoV-2 on some special tissues or organs. Here, we generated a human ACE2 and SARS-CoV-2 NF/F knockin mouse line that constitutively expresses human ACE2 and specifically expresses SARS-CoV-2 N gene induced by Cre-recombinase. By crossing with Cre transgenic lines allowing for lung-specific and constitutive expression, we generated lung-specific (Sftpc-hACE2-NF/F) and constitutive SARS-CoV-2 N (EIIa-hACE2-NF/F) expressing mice. Upon intranasal infection with a SARS-CoV-2 GFP/ΔN strain which can only replicate in SARS-CoV-2 N expressed cells, we demonstrated that both the Sftpc-hACE2-NF/F and EIIa-hACE2-NF/F mice support viral replication. Consistent with our design, viral replication was limited to the lung tissues in Sftpc-hACE2-NF/F mice, while the EIIa-hACE2-NF/F mice developed infections in multiple tissues. Furthermore, our model supports different SARS-CoV-2 variants infection, and it can be successfully used to evaluate the effects of therapeutic monoclonal antibodies (Ab1F11) and antiviral drugs (Molnupiravir). Finally, to test the effect of SARS-CoV-2 infection on male reproduction, we generated Sertoli cell-specific SARS-CoV-2 N expressed mice by crossing with AMH-Cre transgenic line. We found that SARS-CoV-2 GFP/ΔN strain could infect Sertoli cells, led to spermatogenic defects due to the destruction of blood-testis barrier. Overall, combining with different tissue-specific Cre transgenic lines, the human ACE2 and SARS-CoV-2 NF/F line enables us to evaluate antivirals in vivo and study the pathogenesis of SARS-CoV-2 on some special tissues or organs.

10.
Antiviral Res ; 212: 105571, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36868315

RESUMO

Development of potent and broad-spectrum antivirals against SARS-CoV-2 remains one of top priorities, especially in the case of that current vaccines cannot effectively prevent viral transmission. We previously generated a group of fusion-inhibitory lipopeptides, with one formulation being evaluated under clinical trials. In this study, we dedicated to characterize the extended N-terminal motif (residues 1161-1168) of the so-called spike (S) heptad repeat 2 (HR2) region. Alanine scanning analysis of this motif verified its critical roles in S protein-mediated cell-cell fusion. Using a panel of HR2 peptides with the N-terminal extensions, we identified a peptide termed P40, which contained four extended N-terminal residues (VDLG) and exhibited improved binding and antiviral activities, whereas the peptides with further extensions had no such effects. Then, we developed a new lipopeptide P40-LP by modifying P40 with cholesterol, which exhibited dramatically increased activities in inhibiting SARS-CoV-2 variants including divergent Omicron sublineages. Moreover, P40-LP displayed a synergistic effect with IPB24 lipopeptide that was designed containing the C-terminally extended residues, and it could effectively inhibit other human coronaviruses, including SARS-CoV, MERS-CoV, HCoV-229E, and HCoV-NL63. Taken together, our results have provided valuable insights for understanding the structure-function relationship of SARS-CoV-2 fusion protein and offered novel antiviral strategies to fight against the COVID-19 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Pandemias/prevenção & controle , Glicoproteína da Espícula de Coronavírus/metabolismo , Antivirais/farmacologia , Lipopeptídeos/farmacologia , Antirretrovirais
11.
Angew Chem Int Ed Engl ; 62(1): e202213361, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36342499

RESUMO

Supported metal nanoparticles are used as heterogeneous catalysts but often deactivated due to sintering at high temperatures. Confining metal species into a porous matrix reduces sintering, yet supports rarely provide additional stabilization. Here, we used the silanol-rich layered zeolite IPC-1P to stabilize ultra-small Rh nanoparticles. By adjusting the IPC-1P interlayer space through swelling, we prepared various architectures, including microporous and disordered mesoporous. In situ scanning transmission electron microscopy confirmed that Rh nanoparticles are resistant to sintering at high temperature (750 °C, 6 hrs). Rh clusters strongly bind to surface silanol quadruplets at IPC-1P layers by hydrogen transfer to clusters, while high silanol density hinders their migration based on density functional theory calculations. Ultimately, combining swelling with long-chain surfactant and utilizing metal-silanol interactions resulted in a novel, catalytically active material-Rh@IPC_C22.

12.
mBio ; 13(3): e0130022, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35638730

RESUMO

Ubiquitin signaling is essential for immunity to restrict pathogen proliferation. Due to its enormous impact on human health and the global economy, intensive efforts have been invested in studying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its interactions with hosts. However, the role of the ubiquitin network in pathogenicity has not yet been explored. Here, we found that ORF9b of SARS-CoV-2 is ubiquitinated on Lys-4 and Lys-40 by unknown E3 ubiquitin ligases and is degraded by the ubiquitin proteasomal system. Importantly, we identified USP29 as a host factor that prevents ORF9b ubiquitination and subsequent degradation. USP29 interacts with the carboxyl end of ORF9b and removes ubiquitin chains from the protein, thereby inhibiting type I interferon (IFN) induction and NF-κB activation. We also found that ORF9b stabilization by USP29 enhanced the virulence of VSV-eGFP and transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). Moreover, we observed that the mRNA level of USP29 in SARS-CoV-2 patients was higher than that in healthy people. Our findings provide important evidence indicating that targeting USP29 may effectively combat SARS-CoV-2 infection. IMPORTANCE Coronavirus disease 2019 (COVID-19) is a current global health threat caused by SARS-CoV-2. The innate immune response such as type I IFN (IFN-I) is the first line of host defense against viral infections, whereas SARS-CoV-2 proteins antagonize IFN-I production through distinct mechanisms. Among them, ORF9b inhibits the canonical IκB kinase alpha (IKKɑ)/ß/γ-NF-κB signaling and subsequent IFN production; therefore, discovering the regulation of ORF9b by the host might help develop a novel antiviral strategy. Posttranslational modification of proteins by ubiquitination regulates many biological processes, including viral infections. Here, we report that ORF9b is ubiquitinated and degraded through the proteasome pathway, whereas deubiquitinase USP29 deubiquitinates ORF9b and prevents its degradation, resulting in the enhancement of ORF9b-mediated inhibition of IFN-I and NF-κB activation and the enhancement of virulence of VSV-eGFP and SARS-CoV-2 trVLP.


Assuntos
Fenômenos Biológicos , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Enzimas Desubiquitinantes , Humanos , Imunidade Inata , NF-kappa B , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma , SARS-CoV-2/genética , Proteases Específicas de Ubiquitina , Ubiquitinas , Virulência
13.
mBio ; 13(2): e0009922, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35266815

RESUMO

Recently, highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 with mutations within the spike proteins were identified in India. The spike protein of Kappa contains the four mutations E154K, L452R, E484Q, and P681R, and Delta contains L452R, T478K, and P681R, while B.1.618 spike harbors mutations Δ145-146 and E484K. However, it remains unknown whether these variants have alterations in their entry efficiency, host tropism, and sensitivity to neutralizing antibodies as well as entry inhibitors. In this study, we found that Kappa, Delta, or B.1.618 spike uses human angiotensin-converting enzyme 2 (ACE2) with no or slightly increased efficiency, while it gains a significantly increased binding affinity with mouse, marmoset, and koala ACE2 orthologs, which exhibit limited binding with wild-type (WT) spike. Furthermore, the P681R mutation leads to enhanced spike cleavage, which could facilitate viral entry. In addition, Kappa, Delta, and B.1.618 exhibit a reduced sensitivity to neutralization by convalescent-phase sera due to the mutation E484Q, T478K, Δ145-146, or E484K, but remain sensitive to entry inhibitors such as ACE2-Ig decoy receptor. Collectively, our study revealed that enhanced human and mouse ACE2 receptor engagement, increased spike cleavage, and reduced sensitivity to neutralization antibodies of Kappa, Delta and B.1.618 may contribute to the rapid spread of these variants. Furthermore, our results also highlight that ACE2-Ig could be developed as a broad-spectrum antiviral strategy against SARS-CoV-2 variants. IMPORTANCE SARS-CoV-2, the causative agent of pandemic COVID-19, is rapidly evolving to be more transmissible and to exhibit evasive immune properties, compromising neutralization by antibodies from vaccinated individuals or convalescent-phase sera. Recently, SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 with mutations within the spike proteins were identified in India. In this study, we examined cell entry efficiencies of Kappa, Delta, and B.1.618. In addition, the variants, especially the Delta variant, exhibited expanded capabilities to use mouse, marmoset, and koala ACE2 for entry. Convalescent sera from patients infected with nonvariants showed reduced neutralization titers among the Kappa, Delta, and B.1.618 variants. Furthermore, the variants remain sensitive to ACE2-Ig decoy receptor. Our study thus could facilitate understanding how variants have increased transmissibility and evasion of established immunity and also could highlight the use of an ACE2 decoy receptor as a broad-spectrum antiviral strategy against SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Animais , Antivirais , COVID-19/terapia , Humanos , Evasão da Resposta Imune , Imunização Passiva , Camundongos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Soroterapia para COVID-19
14.
iScience ; 25(4): 104136, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35342878

RESUMO

The global pandemic of COVID-19 caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection confers great threat to public health. Human breast milk is a complex nutritional composition to nourish infants and protect them from different kinds of infectious diseases including COVID-19. Here, we identified that lactoferrin (LF), mucin1 (MUC1), and α-lactalbumin (α-LA) from human breast milk inhibit SARS-CoV-2 infection using a SARS-CoV-2 pseudovirus system and transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). In addition, LF and MUC1 inhibited multiple steps including viral attachment, entry, and postentry replication, whereas α-LA inhibited viral attachment and entry. Importantly, LF, MUC1, and α-LA possess potent antiviral activities toward variants such as B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), and B.1.617.1 (kappa). Taken together, our study provides evidence that human breast milk components (LF, MUC1, and α-LA) are promising antiviral and potential therapeutic candidates warranting further development for treating COVID-19.

15.
Cell Res ; 32(1): 9-23, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34737357

RESUMO

In contrast to the extensive research about viral protein-host protein interactions that has revealed major insights about how RNA viruses engage with host cells during infection, few studies have examined interactions between host factors and viral RNAs (vRNAs). Here, we profiled vRNA-host protein interactomes for three RNA virus pathogens (SARS-CoV-2, Zika, and Ebola viruses) using ChIRP-MS. Comparative interactome analyses discovered both common and virus-specific host responses and vRNA-associated proteins that variously promote or restrict viral infection. In particular, SARS-CoV-2 binds and hijacks the host factor IGF2BP1 to stabilize vRNA and augment viral translation. Our interactome-informed drug repurposing efforts identified several FDA-approved drugs (e.g., Cepharanthine) as broad-spectrum antivirals in cells and hACE2 transgenic mice. A co-treatment comprising Cepharanthine and Trifluoperazine was highly potent against the newly emerged SARS-CoV-2 B.1.351 variant. Thus, our study illustrates the scientific and medical discovery utility of adopting a comparative vRNA-host protein interactome perspective.


Assuntos
COVID-19 , Vírus de RNA , Infecção por Zika virus , Zika virus , Animais , Antivirais , Humanos , Camundongos , RNA Viral , SARS-CoV-2 , Proteínas Virais
16.
Bio Protoc ; 11(21): e4257, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34859136

RESUMO

The ongoing COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As this virus is classified as a biosafety level-3 (BSL-3) agent, the development of countermeasures and basic research methods is logistically difficult. Recently, using reverse genetics, we developed a BSL-2 cell culture system for production of transcription- and replication-component virus-like-particles (trVLPs) by genetic transcomplementation. The system consists of two parts: SARS-CoV-2 GFP/ΔN genomic RNA, in which the nucleocapsid (N) gene, a critical gene for virion packaging, is replaced by a GFP reporter gene; and a packaging cell line for ectopic expression of N (Caco-2-N). The complete viral life cycle can be recapitulated and confined to Caco-2-N cells, with GFP positivity serving as a surrogate readout for viral infection. In addition, we utilized an intein-mediated protein splicing technique to split the N gene into two independent vectors and generated the Caco-2-Nintein cells as a packaging cell line to further enhance the security of this cell culture model. Altogether, this system provides for a safe and convenient method to produce trVLPs in BSL-2 laboratories. These trVLPs can be modified to incorporate desired mutations, permitting high-throughput screening of antiviral compounds and evaluation of neutralizing antibodies. This protocol describes the details of the trVLP cell culture model to make SARS-CoV-2 research more readily accessible.

17.
PLoS Pathog ; 17(11): e1010053, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748603

RESUMO

COVID-19 patients transmitted SARS-CoV-2 to minks in the Netherlands in April 2020. Subsequently, the mink-associated virus (miSARS-CoV-2) spilled back over into humans. Genetic sequences of the miSARS-CoV-2 identified a new genetic variant known as "Cluster 5" that contained mutations in the spike protein. However, the functional properties of these "Cluster 5" mutations have not been well established. In this study, we found that the Y453F mutation located in the RBD domain of miSARS-CoV-2 is an adaptive mutation that enhances binding to mink ACE2 and other orthologs of Mustela species without compromising, and even enhancing, its ability to utilize human ACE2 as a receptor for entry. Structural analysis suggested that despite the similarity in the overall binding mode of SARS-CoV-2 RBD to human and mink ACE2, Y34 of mink ACE2 was better suited to interact with a Phe rather than a Tyr at position 453 of the viral RBD due to less steric clash and tighter hydrophobic-driven interaction. Additionally, the Y453F spike exhibited resistance to convalescent serum, posing a risk for vaccine development. Thus, our study suggests that since the initial transmission from humans, SARS-CoV-2 evolved to adapt to the mink host, leading to widespread circulation among minks while still retaining its ability to efficiently utilize human ACE2 for entry, thus allowing for transmission of the miSARS-CoV-2 back into humans. These findings underscore the importance of active surveillance of SARS-CoV-2 evolution in Mustela species and other susceptible hosts in order to prevent future outbreaks.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/epidemiologia , Adaptação ao Hospedeiro , Vison/imunologia , Mutação , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/genética , Animais , Sítios de Ligação , COVID-19/imunologia , COVID-19/terapia , COVID-19/transmissão , COVID-19/virologia , Feminino , Humanos , Imunização Passiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Vison/virologia , Simulação de Dinâmica Molecular , Países Baixos/epidemiologia , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Adulto Jovem , Soroterapia para COVID-19
18.
J Mater Chem B ; 9(40): 8530, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34622917

RESUMO

Correction for 'Poly(acrylic acid)-mediated synthesis of cerium oxide nanoparticles with variable oxidation states and their effect on regulating the intracellular ROS level' by Xiaohui Ju et al., J. Mater. Chem. B, 2021, 9, 7386-7400, DOI: 10.1039/D1TB00706H.

20.
Vet Microbiol ; 261: 109211, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34481273

RESUMO

African swine fever virus (ASFV), one of the most devastating emerging swine pathogens in China, causes nearly 100 % mortality in naive herds. Here, whole-transcriptome RNA-seq analysis was conducted in porcine alveolar macrophages (PAMs) infected with Pig/Heilongjiang/2018 (Pig/HLJ/18) ASFV at different time points. Our data suggested that ASFV genes expression demonstrated a time-depended pattern and ASFV early genes were involved in antagonizing host innate immunity. Moreover, viral small RNA (vsRNA) was generated as well. Meanwhile, transcriptome analysis of host genes suggested a strong inhibition host immunity-related genes by ASFV infection in PAMs, while enhanced chemokine-mediated signaling pathways and neutrophil chemotaxis were observed in ASFV infected PAMs. Furthermore, ASFV infection also down-regulated host microRNAs (miRNAs) that putatively targeted viral genes, while also triggering dysregulation of host metabolism that promoted virus replication at transcription level. Most importantly, infection of PAMs with ASFV induced a different transcriptome pattern from that of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV), which is known to trigger a host cytokine storm. In conclusion, our transcriptome data implied that ASFV infection in PAMs appeared to be associated with strong inhibition of host immune responses, dysregulation of host chemokine axis and metabolic pathways.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Animais , Quimiocinas/imunologia , Perfilação da Expressão Gênica , Imunidade Inata , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA