Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38001575

RESUMO

The metastasis of tumor cells into vital organs is a major cause of death from diverse types of malignancies [...].

2.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712416

RESUMO

Suppression of antitumor immunity is a prominent feature of the tumor microenvironment. In this issue of the JCI, Taves, Otsuka, and authors show that glucocorticoids (GCs), which are potent immunosuppressive hormones mainly produced by the adrenals, can be reconverted from their inactive form to active metabolites via the 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) enzyme expressed by murine tumor cell lines. In the tumor microenvironment, GCs acted on CD4+ regulatory T cells to enhance their immunosuppressive function and promote tumor growth. The findings suggest that targeting GC recycling as a strategy for modulating tumor immunosuppression has the potential to improve therapeutic efficacy of immune checkpoint blockade.


Assuntos
Glucocorticoides , Linfócitos T Reguladores , Animais , Camundongos , Glucocorticoides/farmacologia , Terapia de Imunossupressão , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1
3.
Nat Commun ; 14(1): 4313, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463901

RESUMO

Metastatic breast-cancer is a major cause of death in women worldwide, yet the relationship between oncogenic drivers that promote metastatic versus primary cancer is still contentious. To elucidate this relationship in treatment-naive animals, we hereby describe mammary-specific transposon-mutagenesis screens in female mice together with loss-of-function Rb, which is frequently inactivated in breast-cancer. We report gene-centric common insertion-sites (gCIS) that are enriched in primary-tumors, in metastases or shared by both compartments. Shared-gCIS comprise a major MET-RAS network, whereas metastasis-gCIS form three additional hubs: Rho-signaling, Ubiquitination and RNA-processing. Pathway analysis of four clinical cohorts with paired primary-tumors and metastases reveals similar organization in human breast-cancer with subtype-specific shared-drivers (e.g. RB1-loss, TP53-loss, high MET, RAS, ER), primary-enriched (EGFR, TGFß and STAT3) and metastasis-enriched (RHO, PI3K) oncogenic signaling. Inhibitors of RB1-deficiency or MET plus RHO-signaling cooperate to block cell migration and drive tumor cell-death. Thus, targeting shared- and metastasis- but not primary-enriched derivers offers a rational avenue to prevent metastatic breast-cancer.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Animais , Camundongos , Neoplasias da Mama/patologia , Transdução de Sinais , Metástase Neoplásica
4.
J Microbiol Biotechnol ; 32(11): 1396-1405, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36317425

RESUMO

Cholera remains a major global public health problem, for which oral cholera vaccines (OCVs) being a valuable strategy. Patients, who have recovered from cholera, develop antibody responses against LPS, cholera toxin (CT), toxin-coregulated pilus (TCP) major subunit A (TcpA) and other antigens; thus, these responses are potentially important contributors to immunity against Vibrio cholerae infection. However, assessments of the efficacy of current OCVs, especially inactivated OCVs, have focused primarily on O-antigen-specific antibody responses, suggesting that more sophisticated strategies are required for inactivated OCVs to induce immune responses against TCP, CT, and other antigens. Previously, we have shown that the toxT-139F allele enables V. cholerae strains to produce CT and TCP under simple laboratory culture conditions. Thus, we hypothesized that V. cholerae strains that express TCP via the toxT-139F allele induce TCP-specific antibody responses. As anticipated, V. cholerae strains that expressed TCP through the toxT-139F allele elicited antibody responses against TCP when the inactivated bacteria were delivered via a mouse model. We have further developed TCP-expressing V. cholerae strains that have been used in inactivated OCVs and shown that they effect an antibody response against TcpA in vivo, suggesting that V. cholerae strains with the toxT-139F allele are excellent candidates for cholera vaccines.


Assuntos
Vacinas contra Cólera , Cólera , Vibrio cholerae , Camundongos , Animais , Vibrio cholerae/genética , Cólera/prevenção & controle , Cólera/microbiologia , Formação de Anticorpos , Proteínas de Fímbrias/genética , Alelos , Toxina da Cólera/genética , Proteínas de Bactérias/genética
5.
Immune Netw ; 22(2): e16, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35573152

RESUMO

The gastrointestinal tract is the first organ directly affected by fasting. However, little is known about how fasting influences the intestinal immune system. Intestinal dendritic cells (DCs) capture antigens, migrate to secondary lymphoid organs, and provoke adaptive immune responses. We evaluated the changes of intestinal DCs in mice with short-term fasting and their effects on protective immunity against Listeria monocytogenes (LM). Fasting induced an increased number of CD103+CD11b- DCs in both small intestinal lamina propria (SILP) and mesenteric lymph nodes (mLN). The SILP CD103+CD11b- DCs showed proliferation and migration, coincident with increased levels of GM-CSF and C-C chemokine receptor type 7, respectively. At 24 h post-infection with LM, there was a significant reduction in the bacterial burden in the spleen, liver, and mLN of the short-term-fasted mice compared to those fed ad libitum. Also, short-term-fasted mice showed increased survival after LM infection compared with ad libitum-fed mice. It could be that significantly high TGF-ß2 and Aldh1a2 expression in CD103+CD11b- DCs in mice infected with LM might affect to increase of Foxp3+ regulatory T cells. Changes of major subset of DCs from CD103+ to CD103- may induce the increase of IFN-γ-producing cells with forming Th1-biased environment. Therefore, the short-term fasting affects protection against LM infection by changing major subset of intestinal DCs from tolerogenic to Th1 immunogenic.

6.
EMBO J ; 41(4): e106825, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35023164

RESUMO

Despite extensive analysis of pRB phosphorylation in vitro, how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb∆K4 and Rb∆K7 knock-in mice, in which either four or all seven phosphorylation sites in the C-terminal region of pRb, respectively, have been abolished by Ser/Thr-to-Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb∆K4 mice exhibit telomere attrition but no other abnormalities, Rb∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb∆K7 mice is insulin-sensitive and associated with failure of quiescent pancreatic ß-cells to re-enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence-associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre-treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re-entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK-inhibitor therapeutics, diabetes, and longevity.


Assuntos
Envelhecimento/fisiologia , Ácido Ascórbico/farmacologia , Diabetes Mellitus Experimental/prevenção & controle , Proteína do Retinoblastoma/metabolismo , Animais , Senescência Celular/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Fator de Transcrição E2F1/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Fibroblastos/efeitos dos fármacos , Técnicas de Introdução de Genes , Células Secretoras de Insulina/patologia , Camundongos , Fosforilação , Gravidez , Proteína do Retinoblastoma/genética , Telômero/genética
7.
Sci Rep ; 12(1): 941, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042907

RESUMO

Bacteriophages, simply phages, have long been used as a potential alternative to antibiotics for livestock due to their ability to specifically kill enterotoxigenic Escherichia coli (ETEC), which is a major cause of diarrhea in piglets. However, the control of ETEC infection by phages within intestinal epithelial cells, and their relationship with host immune responses, remain poorly understood. In this study, we evaluated the effect of phage EK99P-1 against ETEC K99-infected porcine intestinal epithelial cell line (IPEC-J2). Phage EK99P-1 prevented ETEC K99-induced barrier disruption by attenuating the increased permeability mediated by the loss of tight junction proteins such as zonula occludens-1 (ZO-1), occludin, and claudin-3. ETEC K99-induced inflammatory responses, such as interleukin (IL)-8 secretion, were decreased by treatment with phage EK99P-1. We used a IPEC-J2/peripheral blood mononuclear cell (PBMC) transwell co-culture system to investigate whether the modulation of barrier disruption and chemokine secretion by phage EK99P-1 in ETEC K99-infected IPEC-J2 would influence immune cells at the site of basolateral. The results showed that phage EK99P-1 reduced the mRNA expression of ETEC K99-induced pro-inflammatory cytokines, IL-1ß and IL-8, from PBMC collected on the basolateral side. Together, these results suggest that phage EK99P-1 prevented ETEC K99-induced barrier dysfunction in IPEC-J2 and alleviated inflammation caused by ETEC K99 infection. Reinforcement of the intestinal barrier, such as regulation of permeability and cytokines, by phage EK99P-1 also modulates the immune cell inflammatory response.


Assuntos
Escherichia coli Enterotoxigênica/virologia , Mucosa Intestinal/metabolismo , Proteínas de Junções Íntimas/metabolismo , Animais , Aderência Bacteriana/fisiologia , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bacteriófagos/patogenicidade , Linhagem Celular , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/fisiologia , Células Epiteliais/metabolismo , Escherichia coli/genética , Escherichia coli/fisiologia , Escherichia coli/virologia , Infecções por Escherichia coli/prevenção & controle , Inflamação/metabolismo , Enteropatias/metabolismo , Intestinos , Ocludina/metabolismo , Permeabilidade , Suínos , Junções Íntimas/metabolismo
8.
Nat Commun ; 12(1): 6059, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663827

RESUMO

The strength of the T cell receptor interaction with self-ligands affects antigen-specific immune responses. However, the precise function and underlying mechanisms are unclear. Here, we demonstrate that naive CD8+ T cells with relatively high self-reactivity are phenotypically heterogeneous owing to varied responses to type I interferon, resulting in three distinct subsets, CD5loLy6C-, CD5hiLy6C-, and CD5hiLy6C+ cells. CD5hiLy6C+ cells differ from CD5loLy6C- and CD5hiLy6C- cells in terms of gene expression profiles and functional properties. Moreover, CD5hiLy6C+ cells demonstrate more extensive antigen-specific expansion upon viral infection, with enhanced differentiation into terminal effector cells and reduced memory cell generation. Such features of CD5hiLy6C+ cells are imprinted in a steady-state and type I interferon dependence is observed even for monoclonal CD8+ T cell populations. These findings demonstrate that self-reactivity controls the functional diversity of naive CD8+ T cells by co-opting tonic type I interferon signaling.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Antígenos CD5/imunologia , Diferenciação Celular , Proliferação de Células , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Receptor de Interferon alfa e beta/genética , Receptores de Interferon/genética , Fator de Transcrição STAT1/genética , Transdução de Sinais , Receptor de Interferon gama
9.
Sci Adv ; 7(36): eabg8764, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516905

RESUMO

Naïve CD8+ T cell quiescence is maintained at a steady state. Although this state of quiescence involves various cell-intrinsic and cell-extrinsic regulators, the mechanisms underlying this regulation remain incompletely understood. Here, we found that signal transducer and activator of transcription 1 (STAT1), a key transcription factor downstream of interferon receptor (IFNR) signaling, plays a cell-intrinsic role in maintaining naïve CD8+ T cell quiescence. STAT1-deficient mice showed enhanced proliferation of peripheral naïve CD8+ T cells, which resulted in an abnormal increase in the number of CD44hi memory/activated phenotype cells and an enlargement of secondary lymphoid tissues. This phenomenon was not observed in IFNR-deficient mice but was paradoxically dependent on type I interferon and its alternative signaling pathway via the STAT4­RagD­lysosomal mTORC1 axis. Collectively, these findings underline the importance of STAT1 in regulating the homeostasis of peripheral naïve CD8+ T cells by suppressing their responsiveness to homeostatic cues at a steady state.

10.
Acta Neuropathol Commun ; 9(1): 82, 2021 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-33964983

RESUMO

Mild traumatic brain injury (mTBI) results in broad neurological symptoms and an increased risk of being diagnosed with a neurodegenerative disease later in life. While the immediate oxidative stress response and post-mortem pathology of the injured brain has been well studied, it remains unclear how early pathogenic changes may drive persistent symptoms and confer susceptibility to neurodegeneration. In this study we have used a mouse model of repeated mTBI (rmTBI) to identify early gene expression changes at 24 h or 7 days post-injury (7 dpi). At 24 h post-injury, gene expression of rmTBI mice shows activation of the DNA damage response (DDR) towards double strand DNA breaks, altered calcium and cell-cell signalling, and inhibition of cell death pathways. By 7 dpi, rmTBI mice had a gene expression signature consistent with induction of cellular senescence, activation of neurodegenerative processes, and inhibition of the DDR. At both timepoints gliosis, microgliosis, and axonal damage were evident in the absence of any gross lesion, and by 7 dpi rmTBI also mice had elevated levels of IL1ß, p21, 53BP1, DNA2, and p53, supportive of DNA damage-induced cellular senescence. These gene expression changes reflect establishment of processes usually linked to brain aging and suggests that cellular senescence occurs early and most likely prior to the accumulation of toxic proteins. These molecular changes were accompanied by spatial learning and memory deficits in the Morris water maze. To conclude, we have identified DNA damage-induced cellular senescence as a repercussion of repeated mild traumatic brain injury which correlates with cognitive impairment. Pathways involved in senescence may represent viable treatment targets of post-concussive syndrome. Senescence has been proposed to promote neurodegeneration and appears as an effective target to prevent long-term complications of mTBI, such as chronic traumatic encephalopathy and other related neurodegenerative pathologies.


Assuntos
Envelhecimento/patologia , Concussão Encefálica/patologia , Disfunção Cognitiva/patologia , Dano ao DNA/fisiologia , Modelos Animais de Doenças , Idade de Início , Envelhecimento/genética , Envelhecimento/psicologia , Animais , Concussão Encefálica/genética , Concussão Encefálica/psicologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/psicologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
11.
Immune Netw ; 21(2): e14, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33996170

RESUMO

Scrub typhus develops after the individual is bitten by a trombiculid mite infected with Orientia tsutsugamushi. Since it has been reported that pneumonia is frequently observed in patients with scrub typhus, we investigated whether intranasal (i.n.) vaccination with the outer membrane protein of O. tsutsugamushi (OMPOT) would induce a protective immunity against O. tsutsugamushi infection. It was particular interest that when mice were infected with O. tsutsugamushi, the bacteria disseminated into the lungs, causing pneumonia. The i.n. vaccination with OMPOT induced IgG responses in serum and bronchoalveolar lavage (BAL) fluid. The anti-O. tsutsugamushi IgA Abs in BAL fluid after the vaccination showed a high correlation of the protection against O. tsutsugamushi. The vaccination induced strong Ag-specific Th1 and Th17 responses in the both spleen and lungs. In conclusion, the current study demonstrated that i.n. vaccination with OMPOT elicited protective immunity against scrub typhus in mouse with O. tsutsugamushi infection causing subsequent pneumonia.

12.
Sci Rep ; 11(1): 9181, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911160

RESUMO

The eukaryotic elongation factor-2 kinase, eEF2K, which restricts protein translation elongation, has been identified as a potential therapeutic target for diverse types of malignancies including triple negative breast cancer (TNBC). However, the contexts in which eEF2K inhibition is essential in TNBC and its consequences on the proteome are largely unknown. Here we show that genetic or pharmacological inhibition of eEF2K cooperated with glutamine (Gln) starvation, and synergized with glutaminase (GLS1) inhibitors to suppress growth of diverse TNBC cell lines. eEF2K inhibition also synergized with depletion of eukaryotic translation initiation factor 4E-binding protein 1 (eIF4EBP1; 4EBP1), a suppressor of eukaryotic protein translation initiation factor 4E (eIF4E), to induce c-MYC and Cyclin D1 expression, yet attenuate growth of TNBC cells. Proteomic analysis revealed that whereas eEF2K depletion alone uniquely induced Cyclin Dependent Kinase 1 (CDK1) and 6 (CDK6), combined depletion of eEF2K and 4EBP1 resulted in overlapping effects on the proteome, with the highest impact on the 'Collagen containing extracellular matrix' pathway (e.g. COL1A1), as well as the amino-acid transporter, SLC7A5/LAT1, suggesting a regulatory loop via mTORC1. In addition, combined depletion of eEF2K and 4EBP1 indirectly reduced the levels of IFN-dependent innate immune response-related factors. Thus, eEF2K inhibition triggers cell cycle arrest/death under unfavourable metabolic conditions such as Gln-starvation/GLS1 inhibition or 4EBP1 depletion, uncovering new therapeutic avenues for TNBC and underscoring a pressing need for clinically relevant eEF2K inhibitors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Ciclo Celular/genética , Quinase do Fator 2 de Elongação/antagonistas & inibidores , Glutaminase/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Benzenoacetamidas/administração & dosagem , Benzenoacetamidas/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Ciclopentanos/farmacologia , Sinergismo Farmacológico , Quinase do Fator 2 de Elongação/genética , Feminino , Inativação Gênica , Humanos , Inibidores de Proteínas Quinases/farmacologia , Proteínas/análise , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sulfetos/administração & dosagem , Sulfetos/farmacologia , Tiadiazóis/administração & dosagem , Tiadiazóis/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
13.
Front Immunol ; 11: 616898, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584707

RESUMO

The antigen-independent, strong proliferative responses of naive CD8+ T cells have been well demonstrated in a particular strain of mice lacking IL-2 receptors. This type of proliferation is mainly driven by common gamma-chain (γc) cytokines, such as IL-2, IL-7, and IL-15, present at abnormally high levels in these mice. Similarly, in the present study, we showed that mice lacking Janus kinase 3 (Jak3), a tyrosine kinase crucial for γc cytokine signaling, could induce strong proliferation of adoptively transferred naive CD8+ T cells. This proliferation was also independent of antigenic stimulation, but heavily dependent on IL-2, as evidenced by the failure of proliferation of adoptively transferred IL-2 receptor alpha- and beta-chain-deficient naive CD8+ T cells. Consistent with this, Jak3-/- mice showed elevated serum levels of IL-2 compared to wild-type mice, and interestingly, IL-2 production was due to high levels of accumulation of activated CD4+ T cells in Jak3-/- mice along with defective CD4+ T regulatory cells. Collectively, these findings reveal previously unidentified unique immune contexts of Jak3-/- mice that cause robust IL-2-driven T cell expansion and have a clinical implication for designing a treatment strategy for human patients with loss-of-function genetic mutations of Jak3.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-2/imunologia , Janus Quinase 3/deficiência , Janus Quinase 3/imunologia , Ativação Linfocitária/imunologia , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
Arch Womens Ment Health ; 23(1): 123-129, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30843119

RESUMO

We investigated the relationship between family conflict resolution and depression, focusing on each component of family conflict resolution to determine which factors have stronger associations with depression. We used data from 2008 to 2015 of the Korea Welfare Panel Study. Our final sample included 3565 participants. For each participant, we included at least 2-8 years of follow-up data with a mean follow-up time of 4.05 ± 2.52 years. To identify the relationship between new-onset depressive symptoms and participants' family conflict resolution styles, we performed generalized estimating equation analysis with autoregressive working correlations to estimate adjusted odds ratios for new-onset depressive symptoms adjusted for covariates. Compared with positive family conflict resolution, negative family conflict resolution had a higher odds ratio for depressive symptoms (aOR 1.80, 95% CI 1.42-2.29). This relationship was strongly founded on participants who were women (aOR 2.35, 95% CI 1.55-3.94) with experience of verbal aggression (aOR 1.84, 95% CI 1.42-2.37) and threatening behaviors (aOR 1.89, 95% CI 1.25-2.85). Negative family conflict resolution has long-term associations with an elevated risk of depressive symptoms. In particular, we observed higher risks of depression with verbal and psychological conflict than with physical conflict. Health care providers and health policymakers should support the management and development of methods for dealing with family conflict to improve mental health at a family level, as well as an individual level.


Assuntos
Depressão/epidemiologia , Conflito Familiar/psicologia , Negociação/psicologia , Adulto , Idoso , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Razão de Chances , República da Coreia/epidemiologia , Fatores Sexuais , Adulto Jovem
15.
Biosens Bioelectron ; 132: 279-285, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30884314

RESUMO

Highly sensitive phenol biosensor was developed by using well-dispersed carbon nanotubes (CNTs) in enzyme solution and adding CNTs in enzyme electrodes. First, the intact CNTs were dispersed in aqueous tyrosinase (TYR) solution, and TYR molecules were precipitated and crosslinked to prepare the sample of enzyme adsorption, precipitation and crosslinking (EAPC). EAPC exhibited 10.5- and 5.4-fold higher TYR activity per mg of CNTs as compared to enzyme adsorption (EA) and enzyme adsorption/crosslinking (EAC), respectively. EAPC retained 29% of its initial activity after incubation at 40 °C for 128 h, while EA and EAC showed no residual activities, respectively. In biosensing a model phenolic compound of catechol, the sensitivities of EA, EAC and EAPC electrodes on glassy carbon electrode (GCE) were 34, 281 and 675 µA/mM/cm2, respectively. When 90 w/w% CNTs were added to the enzyme electrodes, the sensitivities of EA, EAC, and EAPC electrodes were 146, 427, and 1160 µA/mM/cm2, respectively, and the EAPC electrode showed a 2.3-fold increase in sensitivity upon CNT addition. Catechol and phenol could also be detected by EAPC on the screen-printed electrode (SPE), with sensitivities of 1340 and 1170 µA/mM/cm2, respectively. The sensitivity of EAPC-SPE for phenol detection in the effluent from real municipal wastewater treatment plant was 1100 µA/mM/cm2. The sensitivity of EAPC-SPE retained 74% of its initial sensitivity after incubation at 40 °C for 12 h. The combination of EAPC immobilization and CNT addition has great potential for application in the development of sensitive enzyme biosensors for various analytes and phenols in water environments.


Assuntos
Agaricales/enzimologia , Técnicas Biossensoriais/métodos , Enzimas Imobilizadas/química , Monofenol Mono-Oxigenase/química , Nanotubos de Carbono/química , Fenóis/análise , Poluentes Químicos da Água/análise , Catecóis/análise , Reagentes de Ligações Cruzadas/química , Eletrodos , Limite de Detecção , Modelos Moleculares , Nanotubos de Carbono/ultraestrutura , Fenol/análise , Águas Residuárias/análise
16.
Acta Biomater ; 90: 362-372, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30922953

RESUMO

Developing effective mucosal subunit vaccine for the Streptococcus pneumoniae has been unsuccessful mainly because of their poor immunogenicity with insufficient memory T and B cell responses. We thus address whether such limitation can be overcome by introducing effective adjuvants that can enhance immunity and show here that polysorbitol transporter (PST) serves as a mucosal adjuvant for a subunit vaccine against the Streptococcus pneumoniae. Pneumococcal surface protein A (PspA) with PST adjuvant induced protective immunity against S. pneumoniae challenge, especially long-term T and B cell immune responses. Moreover, we found that the PST preferentially induced T helper (Th) responses toward Th2 or T follicular helper (Tfh) cells and, importantly, that the responses were mediated through antigen-presenting cells via activating a peroxisome proliferator-activated receptor gamma (PPAR-γ) pathway. Thus, these data indicate that PST can be used as an effective and safe mucosal vaccine adjuvant against S. pneumoniae infection. STATE OF SIGNIFICANCE: In this study, we suggested the nanoparticle forming adjuvant, PST works as an effective adjuvant for the pneumococcal vaccine, PspA. The PspA subunit vaccine together with PST adjuvant efficiently induced protective immunity, even in the long-term memory responses, against Streptococcus pneumoniae lethal challenge. We found that PspA with PST adjuvant induced dendritic cell activation followed by follicular helper T cell responses through PPAR-γ pathway resulting long-term memory antibody-producing cells. Consequently, in this paper, we suggest the mechanism for safe nanoparticle forming subunit vaccine adjuvant against pneumococcal infection.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Nanopartículas/química , Infecções Pneumocócicas , Vacinas Pneumocócicas , Streptococcus pneumoniae/imunologia , Vacinação , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Administração Intranasal , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/uso terapêutico , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/patologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/imunologia , Vacinas Pneumocócicas/farmacologia
17.
Front Immunol ; 10: 3063, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038618

RESUMO

Probiotics can be an effective treatment for atopic dermatitis (AD), while their mechanism of action is still unclear. Here, we induced AD in mice with 2,4-dinitrochlorobenzene and administrated YK4, a probiotic mixture consisting of Lactobacillus acidophilus CBT LA1, L. plantarum CBT LP3, Bifidobacterium breve CBT BR3, and B. lactis CBT BL3. Then, we have validated the underlying mechanism for the alleviation of AD by YK4 from the intestinal and systematic immunological perspectives. Administration of YK4 in AD mice alleviated the symptoms of AD by suppressing the expression of skin thymic stromal lymphopoietin and serum immunoglobulin E eliciting excessive T-helper (Th) 2 cell-mediated responses. YK4 inhibited Th2 cell population through induce the proportion of Th1 cells in spleen and Treg cells in Peyer's patches and mesenteric lymph node (mLN). CD103+ dendritic cells (DCs) in mLN and the spleen were significantly increased in AD mice administered with YK4 when compared to AD mice. Furthermore, galectin-9 was significantly increased in the gut of AD mice administered with YK4. In vitro experiments were performed using bone marrow-derived DCs (BMDC) and CD4+ T cells to confirm the immune mechanisms of YK4 and galectin-9. The expression of CD44, a receptor of galectin-9, together with programmed death-ligand 1 was significantly upregulated in BMDCs following treatment with YK4. IL-10 and IL-12 were upregulated when BMDCs were treated with YK4. Cytokines together with co-receptors from DCs play a major role in the differentiation and activation of CD4+ T cells. Proliferation of Tregs and Th1 cell activation were enhanced when CD4+T cells were co-cultured with YK4-treated BMDCs. Galectin-9 appeared to contribute at least partially to the proliferation of Tregs. The results further suggested that DCs treated with YK4 induced the differentiation of naïve T cells toward Th1 and Tregs. At the same time, YK4 alleviated AD symptoms by inhibiting Th2 response. Thus, the present study suggested a potential role of YK4 as an effective immunomodulatory agent in AD patients.


Assuntos
Dermatite Atópica/etiologia , Dermatite Atópica/metabolismo , Suplementos Nutricionais , Galectinas/metabolismo , Imunomodulação , Probióticos/administração & dosagem , Animais , Citocinas/metabolismo , Dermatite Atópica/patologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Fenótipo , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia
18.
Mol Cell Oncol ; 5(4): e1481814, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250928

RESUMO

The dual phosphatase CDC25 has recently been identified as a target for diverse triple-negative breast cancers including RB1/PTEN/P53-deficient tumors. Moreover, CDC25 inhibitors effectively synergize with PI3K inhibitors to suppress tumor growth. We discuss these findings and the challenges that lie ahead in bringing CDC25 inhibitors to the clinic.

19.
Cell Rep ; 23(1): 112-126, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29617654

RESUMO

CDK4/6 inhibitors are effective against cancer cells expressing the tumor suppressor RB1, but not RB1-deficient cells, posing the challenge of how to target RB1 loss. In triple-negative breast cancer (TNBC), RB1 and PTEN are frequently inactivated together with TP53. We performed kinome/phosphatase inhibitor screens on primary mouse Rb/p53-, Pten/p53-, and human RB1/PTEN/TP53-deficient TNBC cell lines and identified CDC25 phosphatase as a common target. Pharmacological or genetic inhibition of CDC25 suppressed growth of RB1-deficient TNBC cells that are resistant to combined CDK4/6 plus CDK2 inhibition. Minimal cooperation was observed in vitro between CDC25 antagonists and CDK1, CDK2, or CDK4/6 inhibitors, but strong synergy with WEE1 inhibition was apparent. In accordance with increased PI3K signaling following long-term CDC25 inhibition, CDC25 and PI3K inhibitors effectively synergized to suppress TNBC growth both in vitro and in xenotransplantation models. These results provide a rationale for the development of CDC25-based therapies for diverse RB1/PTEN/TP53-deficient and -proficient TNBCs.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Fosfatases cdc25/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
20.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(2): 165-176, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29191638

RESUMO

Hydrogen sulfide (H2S) has been recognized as an important gasotransmitter analogous to nitric oxide and carbon monoxide. Cystathionine gamma-lyase (CSE)-derived H2S is implicated in the regulation of insulin resistance and glucose metabolism, but the involvement of CSE/H2S system in energy homeostasis and fat mass has not been extensively explored. In this study, a potential functional role of the CSE/H2S system in in vitro adipocyte differentiation and in vivo adipogenesis and the underlying mechanism was investigated. CSE expression and H2S production were increased during adipocyte differentiation, and that the pattern of CSE mRNA expression was similar to that of CCAAT/enhancer-binding protein (C/EBP) ß and δ, two key regulators for adipogenesis. C/EBPß and γ bind to the CCAAT box in CSE promoter and stimulate CSE gene transcription. H2S induced PPARγ transactivation activity by S-sulfhydrating all the cysteine residues in the DNA binding domain and stimulated adipogenesis. High fat diet-induced fat mass was lost in CSE deficient mice, and exogenously applied H2S promoted fat mass accumulation in fruit flies. In conclusion, CSE/H2S system is essential for adipogenesis and fat mass accumulation through enhancement of PPARγ function in adipocytes. This study suggests that the CSE/H2S system is involved in the pathogenesis of obesity in mice.


Assuntos
Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Obesidade/metabolismo , Células 3T3-L1 , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Diferenciação Celular/genética , Cistationina gama-Liase/genética , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/patologia , Elementos de Resposta , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA