Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(24): 6577-6580, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099803

RESUMO

Due to the sub-diffraction-limited size and giant field enhancement, plasmonic tweezers have a natural advantage in trapping metallic particles. However, the strict excitation condition makes it difficult to generate an arbitrary plasmonic field in a controllable manner, thus narrowing its practical applications. Here, we propose an all-optical plasmonic field shaping method based on a digital holographic algorithm and generate plasmonic vortex arrays with controllable spot numbers, spatial location, and topological charge. Our experimental results demonstrate that multiple gold particles can be stably trapped and synchronously rotated in the vortex arrays, and the particles' kinestate can be dynamically switched. The proposed holographic plasmonic vortex tweezers are suitable for a broadband particle trapping, and this method can be generalized to other surface electromagnetic waves like Bloch surface wave.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA