Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 45(9): 1547-1557, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35953615

RESUMO

Groundwater and surface water bodies may have contaminants from urban, industrial, or agricultural wastewater, including emerging contaminants (ECs) or micropollutants (MPs). Frequently, they are not efficiently removed by microbial action due to their minimal concentration in water and the low microbiota affinity for complex compounds. This work developed a process allowing the adsorption of contaminants and their simultaneous biodegradation using horizontal tubular fixed-bed biofilm reactors (HTR). Each HTR has two zones: an equalizer-aerator of the incoming liquid flow and a fixed bed zone. This zone was packed with a mixed support material consisting of granular bio-activated carbon (Bio-GAC) and porous material that increases the bed permeability, thus decreasing the pressure drop. Five microbial communities were acclimated and immobilized in granular activated carbon (GAC) to obtain different specialized Bio-GAC particles able to remove the micropollutants ibuprofen, naproxen, atrazine, carbaryl, and diazinon. The Bio-GAC particles were transferred to HTRs continuously run in microaerophilia at several MPs loading rates. Under these conditions, the removal efficiencies of MPs, except atrazine and carbaryl, were around 100.


Assuntos
Atrazina , Poluentes Químicos da Água , Purificação da Água , Adsorção , Reatores Biológicos , Carbaril , Carvão Vegetal/metabolismo , Diazinon , Ibuprofeno , Naproxeno , Águas Residuárias , Água , Poluentes Químicos da Água/metabolismo
2.
J Environ Health Sci Eng ; 18(2): 559-571, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33312583

RESUMO

PURPOSE: The objective of the work is to determine the best operating conditions for variants of an ecological engineering tool (permeable reactive surface biobarrier -PRSB-) potentially useful for the protection of water resources, preventing the arrival of sediments and pesticides transported by runoffs and tile drainage from agricultural lands, to water bodies. METHODS: Four PRB-prototypes were constructed as fixed-bed horizontal channels packed with a porous material supporting an enriched microbial biofilm. Their dynamic and stoichiometric performance was evaluated in the presence or absence of granular activated carbon, with limiting or sufficient O2 supply. The removal of the pesticides and their leading catabolic derivatives were determined by HPLC. The most abundant cultivable microorganisms were isolated and identified by the sequencing of 16sDNA amplicons. RESULTS: The pollutant removal efficiencies obtained in the aerobic biobarriers or microaerophilia were similar. In addition, slight differences were observed in the presence of GAC as an adsorbent, meaning that the most economical and straightforward type of biobarrier was adequate to remove the pollutants studied. In addition, among the most abundant microorganisms isolated in the microbial biofilms colonizing the aerobic biobarriers, the microalgae Micractinium sp. showed the capacity to accumulate the insecticides permethrin and cypermethrin. CONCLUSIONS: The main observed role of Micractinium sp. in the aerobic barriers was the bioaccumulation of pyrethroids, meaning that biosorption is also a valuable removal mechanism operating in the aerobic PRBs. In this aspect, they behave analogously to subsurface constructed wetlands but, instead of superficial plant life, aerobic PRSBs host microalgae.

3.
FEMS Microbiol Lett ; 366(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747011

RESUMO

In 1995, Pseudomonas sp. ADP, capable of metabolizing atrazine, was isolated from contaminated soil. Genes responsible for atrazine mineralization were found scattered in the 108.8 kb pADP-1 plasmid carried by this strain, some of them flanked by insertion sequences rendering them unstable. The goal of this work was to construct a transcriptional unit containing the atz operon in an easy to transfer manner, to be introduced and inherited stably by Gram-negative bacteria. atz genes were PCR amplified, joined into an operon and inserted onto the mobilizable plasmid pBAMD1-2. Primers were designed to add efficient transcription and translation signals. Plasmid bearing the atz operon was transferred to different Gram-negative strains by conjugation, which resulted in Tn5 transposase-mediated chromosomal insertion of the atz operon. To test the operon activity, atrazine degradation by transposants was assessed both colorimetrically and by high-performance liquid chromatography (HPLC). Transposants mineralized atrazine more efficiently than wild-type Pseudomonas sp. ADP and did not accumulate cyanuric acid. Atrazine degradation was not repressed by simple nitrogen sources. Genes conferring atrazine-mineralizing capacities were stable and had little or null effect on the fitness of different transposants. Introduction of catabolic operons in a stable fashion could be used to develop bacteria with better degrading capabilities useful in bioremediation.


Assuntos
Herbicidas/metabolismo , Óperon/genética , Triazinas/metabolismo , Atrazina/metabolismo , Cromatografia Líquida de Alta Pressão , Bactérias Gram-Negativas/genética , Reação em Cadeia da Polimerase , Pseudomonas/metabolismo , Microbiologia do Solo , Transposases/genética , Transposases/metabolismo
4.
Environ Sci Pollut Res Int ; 26(29): 29991-30002, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31414386

RESUMO

The microbial corrosion of oil and gas pipes is one of the problems occurring in the oil industry. Various mechanisms explaining microbial corrosion have been demonstrated. Commonly, biocorrosion is attributed to sulfate-reducing bacteria. Also, it has recently been reported that microbial species can connect their electron transport system to metal electrodes. In this research, two spore-forming bacteria isolated in different years from a gas pipeline were identified by biochemical techniques and by 16S rDNA amplification, sequencing, and comparison with the NCBI database. Isolates were also compared between them using molecular techniques as the restriction patterns, unique for 16S rDNA (ARDRA), and the profile of the amplified bit from the genomic DNA, using an unspecific primer (RAPD). The results obtained showed that both isolates corresponded to Clostridium celerecrescens with a 99% similarity according to the sequence reported on the NCBI database. Also, the ARDRA and RAPD electrophoretic profiles of both strains were identical, and no plasmids were found in the strains. Thus, it can be settled that this bacterium is persistent in the environment prevailing in gas pipelines. Also, it was demonstrated that the bacterial secretion of organic acids contributes to the pitting and general biocorrosion of API XL 52 steel. The rates of corrosion obtained, approximately after 40 days, were correlated with the presence and metabolic activity of C. celerecrescens on the metallic surfaces.


Assuntos
Biofilmes/crescimento & desenvolvimento , Clostridium/isolamento & purificação , Corrosão , Manufaturas/microbiologia , Aço , Anaerobiose , DNA Ribossômico/genética , RNA Ribossômico 16S/genética
5.
Bioprocess Biosyst Eng ; 42(1): 17-27, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30238361

RESUMO

This study deals with the mathematical simulation and experimental validation of a gradient system for the gradual change of the imidacloprid loading rate to a tubular biofilm reactor (TBR). The strategy was used for fast studies of the kinetic and stoichiometric impact caused by the increase in the pesticide loading rate in a TBR, running in plug flow regime. Seemingly, this strategy has never been used for biokinetic and stoichiometric studies in biofilm reactors. For this purpose, a mathematical model describing the substrate transient behavior Sg(t) in a concentration gradient generator system using variable volume tanks is proposed. A second model, representing the temporary variation in the loading rate of imidacloprid to an aerated equalizer tank preceding the packed zone of the TBR, is also presented. Both models were experimentally confirmed. After the treatment of the experimental data, the kinetic and stoichiometric changes occurring in the TBR, caused by the gradual increase in the imidacloprid loading rate, were readily evaluated. Although the structure of the microbial community, at the phylum level, showed similar behavior along the tubular reactor, the stress produced by the gradual increase in imidacloprid concentration had functional consequences on the mixed microbial populations which were reflected on the stoichiometric and kinetic parameters. After increasing more than five times the imidacloprid loading rate to the TBR, the imidacloprid removal efficiency decayed about 40%, and the microbial-specific removal rate of the insecticide showed a decrease of about 30%.


Assuntos
Reatores Biológicos/microbiologia , Consórcios Microbianos , Neonicotinoides/química , Nitrocompostos/química , Biofilmes , Análise da Demanda Biológica de Oxigênio , Simulação por Computador , Meios de Cultura , Desenho de Equipamento , Inseticidas/química , Cinética , Modelos Teóricos , Oxigênio/química , Porosidade
6.
N Biotechnol ; 32(3): 379-86, 2015 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-25109268

RESUMO

Aromatic amines are important industrial products having in their molecular structure one or more aromatic rings. These are used as precursors for the synthesis of dyes, adhesives, pesticides, rubber, fertilizers and surfactants. The aromatic amines are common constituents of industrial effluents, generated mostly by the degradation of azo dyes. Several of them are a threat to human health because they can by toxic, allergenic, mutagenic or carcinogenic. The most common are benzenesulfonic amines, such as 4-ABS (4-aminobenzene sulfonic acid) and naphthalene sulfonic amines, such as 4-ANS (4-amino naphthalene sulfonic acid). Sometimes, the mixtures of toxic compounds are more toxic or inhibitory than the individual compounds, even for microorganisms capable of degrading them. Therefore, the aim of this study was to evaluate the degradation of the mixture 4-ANS plus 4-ABS by a bacterial community immobilized in fragments of volcanic stone, using a packed bed continuous reactor. In this reactor, the amines loading rates were varied from 5.5 up to 69 mg L(-1) h(-1). The removal of the amines was determined by high-performance liquid chromatography and chemical oxygen demand. With this information, we have studied the substrate inhibition of the removal rate of the aromatic amines during the degradation of the mixture of sulfonated aromatic amines by the immobilized microorganisms. Experimental results were fitted to parabolic, hyperbolic and linear inhibition models. The model that best characterizes the inhibition of the specific degradation rate in the biofilm reactor was a parabolic model with values of RXM=58.15±7.95 mg (10(9) cells h)(-1), Ks=0.73±0.31 mg L(-1), Sm=89.14±5.43 mg L(-1) and the exponent m=5. From the microbial community obtained, six cultivable bacterial strains were isolated and identified by sequencing their 16S rDNA genes. The strains belong to the genera Variovorax, Pseudomonas, Bacillus, Arthrobacter, Nocardioides and Microbacterium. This microbial consortium could use the mixture of aromatic amines as sources of carbon, nitrogen, energy and sulfur.


Assuntos
Aminas/química , Reatores Biológicos/microbiologia , Arthrobacter/metabolismo , Bacillus/metabolismo , Biodegradação Ambiental , Biofilmes , Análise da Demanda Biológica de Oxigênio , Cromatografia Líquida de Alta Pressão , Corantes/química , Meios de Cultura , DNA Ribossômico/genética , Resíduos Industriais/análise , Nitrogênio/química , Nocardia/metabolismo , Oxigênio/química , Pseudomonas/metabolismo , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/química
7.
Environ Sci Pollut Res Int ; 21(14): 8765-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24737019

RESUMO

Tordon is a widely used herbicide formulation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-amino-3,5,6-trichloropicolinic acid (picloram), and it is considered a toxic herbicide. The purposes of this work were to assess the feasibility of a microbial consortium inoculated in a lab-scale compartmentalized biobarrier, to remove these herbicides, and isolate, identify, and evaluate their predominant microbial constituents. Volumetric loading rates of herbicides ranging from 31.2 to 143.9 g m(-3) day(-1), for 2,4-D, and 12.8 to 59.3 g m(-3) day(-1) for picloram were probed; however, the top operational limit of the biobarrier, detected by a decay in the removal efficiency, was not reached. At the highest loading rates probed, high average removal efficiencies of 2,4-D, 99.56 ± 0.44; picloram, 94.58 ± 2.62; and chemical oxygen demand (COD), 89.42 ± 3.68, were obtained. It was found that the lab-scale biofilm reactor efficiently removed both herbicides at dilution rates ranging from 0.92 to 4.23 day(-1), corresponding to hydraulic retention times from 1.087 to 0.236 days. On the other hand, few microbial strains able to degrade picloram are reported in the literature. In this work, three of the nine bacterial strains isolated cometabolically degrade picloram. They were identified as Hydrocarboniphaga sp., Tsukamurella sp., and Cupriavidus sp.


Assuntos
Ácido 2,4-Diclorofenoxiacético/metabolismo , Reatores Biológicos/microbiologia , Herbicidas/metabolismo , Picloram/metabolismo , Poluentes Químicos da Água/metabolismo , Biofilmes , Análise da Demanda Biológica de Oxigênio , Consórcios Microbianos
8.
Biodegradation ; 25(3): 405-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24166157

RESUMO

A microbial community, selected by its ability to degrade triazinic herbicides was acclimatized by successive transfers in batch cultures. Initially, its ability to degrade prometryn, was evaluated using free cells or cells attached to fragments of a porous support. As carbon, nitrogen and sulfur sources, prometryn, (98.8 % purity), or Gesagard, a herbicide formulation containing 44.5 % prometryn and 65.5 % of adjuvants, were used. In batch cultures, a considerable delay in the degradation of prometryn, presumptively caused by the elevated concentration of inhibitory adjuvants, occurred. When pure prometryn was used, volumetric removal rates remarkably higher than those obtained with the herbicide formulation were estimated by fitting the raw experimental data to sigmoidal decay models, and differentiating them. When the microbial consortium was immobilized in a continuously operated biofilm reactor, the negative effect of adjuvants on the rate and removal efficiency of prometryn could not be detected. Using the herbicide formulation, the consortium showed volumetric removal rates greater than 20 g m(-3) h(-1), with prometryn removal efficiencies of 100 %. The predominant bacterial strains isolated from the microbial consortium were Microbacterium sp., Enterobacter sp., Acinetobacter sp., and Flavobacterium sp. Finally, by comparison of the prometryn removal rates with others reported in the literature, it can be concluded that the use of microbial consortia immobilized in a biofilm reactor operated in continuous regime offer better results than batch cultures of pure microbial strains.


Assuntos
Biofilmes/crescimento & desenvolvimento , Herbicidas/metabolismo , Consórcios Microbianos/fisiologia , Modelos Estatísticos , Prometrina/metabolismo , Poluentes Químicos da Água/metabolismo , Actinomycetales/metabolismo , Biodegradação Ambiental , Reatores Biológicos , Células Imobilizadas , Enterobacter/metabolismo , Flavobacterium/metabolismo , Cinética
9.
Bioresour Technol ; 145: 33-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23566464

RESUMO

In this work, an efficient degradation process for the removal of 2,4-D and ametryn, together with organic and inorganic adjuvants used in the commercial formulations of both herbicides, was developed. Although both compounds are toxic for microbial communities, ametryn is markedly more toxic than 2,4-D. In spite of this, the microbial consortium used could resist loading rates up to 31.5 mg L(-1) d(-1) of ametryn, with removal efficiencies up to 97% for both herbicides. Thus, an alternative use of this consortium could be bioaugmentation, as a tool to protect the structure and function of an activated-sludge biota against ametryn or 2,4-D shock loads. The process was carried out in a lab-scale prototype of aerobic biobarrier constructed as a compartmentalized fixed film reactor with airlift recirculation of oxygenated liquid.


Assuntos
Biodegradação Ambiental , Biofilmes , Reatores Biológicos , Herbicidas/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água/instrumentação , Purificação da Água/métodos , Ácido 2,4-Diclorofenoxiacético , Bioensaio , Análise da Demanda Biológica de Oxigênio , Técnicas de Cultura de Células , Clorófitas/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Herbicidas/toxicidade , Cinética , Triazinas , Poluentes Químicos da Água/toxicidade
10.
World J Microbiol Biotechnol ; 29(3): 467-74, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23117676

RESUMO

The persistence of propanil in soil and aquatic environments along with the possible accumulation of toxic degradation products, such as chloroanilines, is of environmental concern. In this work, a continuous small-scale bioprocess to degrade the herbicide propanil, its main catabolic by-product, 3,4-dichloroaniline (3,4-DCA), and the herbicide adjuvants is carried out. A microbial consortium, constituted by nine bacterial genera, was selected. The isolated strains, identified by amplification and sequencing of their 16S rDNA, were: Acidovorax sp., Luteibacter (rhizovicinus), Xanthomonas sp., Flavobacterium sp., Variovorax sp., Acinetobacter (calcoaceticus), Pseudomonas sp., Rhodococcus sp., and Kocuria sp. The ability of the microbial consortium to degrade the herbicide was evaluated in a biofilm reactor at propanil loading rates ranging from 1.9 to 36.8 mg L(-1) h(-1). Complete removal of propanil, 3,4-DCA, chemical oxygen demand and total organic carbon was obtained at propanil loading rates up to 24.9 mg L(-1) h(-1). At higher loading rates, the removal efficiencies decayed. Four of the identified strains could grow individually in propanil, and 3,4-DCA: Pseudomonas sp., Acinetobacter calcoaceticus, Rhodococcus sp., and Xanthomonas sp. The Kokuria strain grew on 3,4-DCA, but not on propanil. The first three bacteria have been related to biodegradation of phenyl urea herbicides or chlorinated anilines. Although some strains of the genera Xanthomonas and Kocuria have a role in the biodegradation of several xenobiotic compounds, as far as we know, there are no reports about degradation of propanil by Xanthomonas or 3,4-DCA by Kocuria species.


Assuntos
Compostos de Anilina/metabolismo , Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Poluentes Ambientais/metabolismo , Herbicidas/metabolismo , Propanil/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Biotecnologia/métodos , Micrococcaceae/genética , Micrococcaceae/metabolismo , Xanthomonas/genética , Xanthomonas/crescimento & desenvolvimento , Xanthomonas/metabolismo
11.
Appl Biochem Biotechnol ; 162(6): 1689-707, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20376575

RESUMO

A microbial community able to aerobically degrade the azo dye Acid Orange 7 was selected from riparian or lacustrine sediments collected at sites receiving textile wastewaters. Three bacterial strains, pertaining to the genera Pseudomonas, Arthrobacter, and Rhizobium, constitute the selected community. The biodegradation of AO7 was carried out in batch-suspended cell culture and in a continuously operated multistage packed-bed BAC reactor. The rapid decolorization observed in batch culture, joined to a delay of about 24 h in COD removal and cell growth, suggests that enzymes involved in biodegradation of the aromatic amines generated after AO7 azo-bond cleavage (1-amino-2-naphthol [1-A2N] and 4-aminobenzenesulfonic acid [4-ABS]), are inducible in this microbial consortium. After this presumptive induction period, the accumulated byproducts, measured through COD, were partially metabolized and transformed in cell mass. At all azo dye loading rates used, complete removal of AO7 and 1-A2N was obtained in the multistage packed-bed BAC reactor (PBR).; however, the overall COD (eta ( COD )) and 4-ABS (eta ( ABS )) removal efficiencies obtained in steady state continuous culture were about 90%. Considering the toxicity of 1-A2N, its complete removal has particular relevance. In the first stages of the packed-bed BAC reactor (Fig. 4a-c), major removal was observed. In the last stage, only a slight removal of COD and 4-ABS was obtained. Comparing to several reported studies, the continuously operated multistage packed-bed BAC reactor showed similar or superior results. In addition, the operation of large-packed-bed BAC reactors could be improved by using several shallow BAC bed stages, because the pressure drop caused by bed compaction of a support material constituted by small and fragile particles can be reduced.


Assuntos
Compostos Azo/metabolismo , Bactérias/metabolismo , Benzenossulfonatos/metabolismo , Reatores Biológicos/microbiologia , Corantes/metabolismo , Microbiologia Industrial/métodos , Adsorção , Aerobiose , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Carbono/química , Células Imobilizadas/metabolismo , Microbiologia Industrial/instrumentação , Povidona/química
12.
Appl Biochem Biotechnol ; 134(3): 223-32, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16960281

RESUMO

The main purpose of this work was to isolate and characterize lactic acid bacteria (LAB) strains to be used for biomass production using a whey-based medium supplemented with an ammonium salt and with very low levels of yeast extract (0.25 g/L). Five strains of LAB were isolated from naturally soured milk after enrichment in whey-based medium. One bacterial isolate, designated MNM2, exhibited a remarkable capability to utilize whey lactose and give a high biomass yield on lactose. This strain was identified as Lactobacillus casei by its 16S rDNA sequence. A kinetic study of cell growth, lactose consumption, and titratable acidity production of this bacterial strain was performed in a bioreactor. The biomass yield on lactose, the percentage of lactose consumption, and the maximum increase in cell mass obtained in the bioreactor were 0.165 g of biomass/g of lactose, 100%, and 2.0 g/L, respectively, which were 1.44, 1.11, and 2.35 times higher than those found in flask cultures. The results suggest that it is possible to produce LAB biomass from a whey-based medium supplemented with minimal amounts of yeast extract.


Assuntos
Reatores Biológicos/microbiologia , Técnicas de Cultura de Células/métodos , Ácido Láctico/metabolismo , Lacticaseibacillus casei/isolamento & purificação , Lacticaseibacillus casei/fisiologia , Lactose/metabolismo , Leite/microbiologia , Animais , Bovinos , Proliferação de Células , Lacticaseibacillus casei/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA