Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Brain Res ; 240(5): 1423-1434, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35288782

RESUMO

Non-local muscle pain may impair endurance performance through neurophysiological mechanisms, but these are relatively unknown. This study examined the effects of muscle pain on neuromuscular and neurophysiological responses in the contralateral limb. On separate visits, nine participants completed an isometric time to task failure (TTF) using the right knee extensors after intramuscular injection of isotonic saline (CTRL) or hypertonic saline (HYP) into the left vastus lateralis. Measures of neuromuscular fatigue were taken before, during and after the TTF using transcranial magnetic stimulation (TMS) and peripheral nerve stimulation. Mean pain intensity was greater in the left leg in HYP (3.3 ± 1.9) compared to CTRL (0.4 ± 0.7; P < 0.001) which was combined with a reduced TTF by 9.8% in HYP (4.54 ± 0.56 min) compared to CTRL (5.07 ± 0.77 min; P = 0.005). Maximum voluntary force was not different between conditions (all P > 0.05). Voluntary activation was lower in HYP compared to CTRL (P = 0.022). No difference was identified between conditions for doublet amplitude (P > 0.05). Furthermore, no difference in MEP·Mmax-1 or the TMS silent period between conditions was observed (all P > 0.05). Non-local pain impairs endurance performance of the contralateral limb. This impairment in performance is likely due to the faster attainment of the sensory tolerance limit from a greater amount of sensory feedback originating from the non-exercising, but painful, left leg.


Assuntos
Fadiga Muscular , Mialgia , Eletromiografia , Potencial Evocado Motor/fisiologia , Humanos , Joelho/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético , Mialgia/induzido quimicamente , Músculo Quadríceps/fisiologia , Solução Salina Hipertônica , Estimulação Magnética Transcraniana
2.
Eur J Appl Physiol ; 122(1): 113-126, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34586471

RESUMO

PURPOSE: Muscle pain can impair exercise performance but the mechanisms for this are unknown. This study examined the effects of muscle pain on neuromuscular fatigue during an endurance task. METHODS: On separate visits, twelve participants completed an isometric time-to-task failure (TTF) exercise of the right knee extensors at ~ 20% of maximum force following an intramuscular injection of isotonic saline (CTRL) or hypertonic saline (HYP) into the vastus lateralis. Measures of neuromuscular fatigue were taken before, during and after the TTF using transcranial magnetic stimulation (TMS) and peripheral nerve stimulation. RESULTS: The mean pain intensity was 57 ± 10 in HYP compared to 38 ± 18 in CTRL (P < 0.001). TTF was reduced in HYP (4.36 ± 0.88 min) compared to CTRL (5.20 ± 0.39 min) (P = 0.003). Maximum voluntary force was 12% lower at minute 1 (P = 0.003) and 11% lower at minute 2 in HYP (P = 0.013) compared to CTRL. Voluntary activation was 4% lower at minute 1 in HYP compared to CTRL (P = 0.006) but not at any other time point (all P > 0.05). The TMS silent period was 9% longer at 100 s during the TTF in HYP compared to CTRL (P = 0.026). CONCLUSION: Muscle pain reduces exercise performance through the excacerbation of neuromuscular fatigue that is central in origin. This appears to be from inhibitory feedback from group III/IV nociceptors which acts to reduce central motor output.


Assuntos
Fadiga Muscular/fisiologia , Dor Musculoesquelética/fisiopatologia , Nervos Periféricos/fisiopatologia , Resistência Física/fisiologia , Adulto , Estimulação Elétrica , Feminino , Humanos , Injeções Intramusculares , Perna (Membro) , Masculino , Medição da Dor , Cloreto de Sódio/administração & dosagem , Estimulação Magnética Transcraniana
3.
Neurosci Lett ; 743: 135584, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352276

RESUMO

Transcranial direct current stimulation (tDCS) is a neuromodulatory tool purported to enhance endurance performance through reducing fatigue related perceptions, including exercise-induced pain (EIP). We examined whether tDCS of the left DLPFC (1) can reduce EIP during a fixed intensity cycling trial (FI), (2) can improve cycling time trial (TT) performance, and (3) whether this was affected by a bilateral or an extracephalic montage. This investigation was comprised of two parts (study one and two). In both studies, participants completed a 10-minute FI trial and a 15-minute TT after 10 min of 2 mA anodal left DLPFC tDCS, SHAM or no stimulation. In study one, 11 participants received tDCS via a bilateral montage. In study two, 20 participants received tDCS using an extracephalic montage. Pain was recorded throughout the FI and TT trials, with power output (PO) monitored during the TT. Study one saw no significant changes in pain (tDCS 4.3 ± 2.0; SHAM 4.0 ± 1.8; control 3.8 ± 1.4) during the FI trial and no significant differences in distance covered, pain or PO in the TT. In study two there were no differences in pain reported in the FI trial, or distance covered (P = 0.239), pain or PO in the TT. In summary, tDCS of the DLPFC did not induce analgesia and provided no ergogenic effect for TT performance, moreover these observations were consistent across both the extracephalic and bilateral montage. These findings are in line with an increasing number of studies demonstrating the inconsistent effects of tDCS.


Assuntos
Teste de Esforço/métodos , Exercício Físico/fisiologia , Manejo da Dor/métodos , Desempenho Físico Funcional , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Feminino , Humanos , Masculino , Limiar da Dor/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA