Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829726

RESUMO

Raman spectroscopy is an important tool in the study of vibrational properties and composition of molecules, peptides, and even proteins. Raman spectra can be simulated based on the change of the electronic polarizability with vibrations, which can nowadays be efficiently obtained via machine learning models trained on first-principles data. However, the transferability of the models trained on small molecules to larger structures is unclear, and direct training on large structures is prohibitively expensive. In this work, we first train two machine learning models to predict the polarizabilities of all 20 amino acids. Both models are carefully benchmarked and compared to density functional theory (DFT) calculations, with the neural network method being found to offer better transferability. By combination of machine learning models with classical force field molecular dynamics, Raman spectra of all amino acids are also obtained and investigated, showing good agreement with experiments. The models are further extended to small peptides. We find that adding structures containing peptide bonds to the training set greatly improves predictions, even for peptides not included in training sets.

2.
Sci Rep ; 13(1): 20558, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996461

RESUMO

Periplasmic solute-binding proteins (SBPs) specific for chitooligosaccharides, (GlcNAc)n (n = 2, 3, 4, 5 and 6), are involved in the uptake of chitinous nutrients and the negative control of chitin signal transduction in Vibrios. Most translocation processes by SBPs across the inner membrane have been explained thus far by two-domain open/closed mechanism. Here we propose three-domain mechanism of the (GlcNAc)n translocation based on experiments using a recombinant VcCBP, SBP specific for (GlcNAc)n from Vibrio cholerae. X-ray crystal structures of unliganded or (GlcNAc)3-liganded VcCBP solved at 1.2-1.6 Å revealed three distinct domains, the Upper1, Upper2 and Lower domains for this protein. Molecular dynamics simulation indicated that the motions of the three domains are independent and that in the (GlcNAc)3-liganded state the Upper2/Lower interface fluctuated more intensively, compared to the Upper1/Lower interface. The Upper1/Lower interface bound two GlcNAc residues tightly, while the Upper2/Lower interface appeared to loosen and release the bound sugar molecule. The three-domain mechanism proposed here was fully supported by binding data obtained by thermal unfolding experiments and ITC, and may be applicable to other translocation systems involving SBPs belonging to the same cluster.


Assuntos
Quitosana , Proteínas Periplásmicas de Ligação , Humanos , Proteínas Periplásmicas de Ligação/metabolismo , Quitosana/metabolismo , Quitina/metabolismo , Proteínas de Transporte/metabolismo , Simulação de Dinâmica Molecular , Ligantes , Translocação Genética , Cristalografia por Raios X
3.
J Struct Biol ; 213(3): 107776, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34371166

RESUMO

The Mycobacterium tuberculosis trifunctional enzyme (MtTFE) is an α2ß2 tetrameric enzyme. The α-chain harbors the 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) activities and the ß-chain provides the 3-ketoacyl-CoA thiolase (KAT) activity. Enzyme kinetic data reported here show that medium and long chain enoyl-CoA molecules are preferred substrates for MtTFE. Modelling studies indicate how the linear medium and long acyl chains of these substrates can bind to each of the active sites. In addition, crystallographic binding studies have identified three new CoA binding sites which are different from the previously known CoA binding sites of the three TFE active sites. Structure comparisons provide new insights into the properties of ECH, HAD and KAT active sites of MtTFE. The interactions of the adenine moiety of CoA with loop-2 of the ECH active site cause a conformational change of this loop by which a competent ECH active site is formed. The NAD+ binding domain (domain C) of the HAD part of MtTFE has only a few interactions with the rest of the complex and adopts a range of open conformations, whereas the A-domain of the ECH part is rigidly fixed with respect to the HAD part. Two loops, the CB1-CA1 region and the catalytic CB4-CB5 loop, near the thiolase active site and the thiolase dimer interface, have high B-factors. Structure comparisons suggest that a competent and stable thiolase dimer is formed only when complexed with the α-chains, highlighting the importance of the assembly for the proper functioning of the complex.


Assuntos
3-Hidroxiacil-CoA Desidrogenases , Mycobacterium tuberculosis , 3-Hidroxiacil-CoA Desidrogenases/química , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Enoil-CoA Hidratase/química , Oxirredução , Especificidade por Substrato
4.
Cell Tissue Res ; 383(3): 1135-1153, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33306155

RESUMO

Collagen XIII is a conserved transmembrane collagen mainly expressed in mesenchymal tissues. Previously, we have shown that collagen XIII modulates tissue development and homeostasis. Integrins are a family of receptors that mediate signals from the environment into the cells and vice versa. Integrin α11ß1 is a collagen receptor known to recognize the GFOGER (O=hydroxyproline) sequence in collagens. Interestingly, collagen XIII and integrin α11ß1 both have a role in the regulation of bone homeostasis. To study whether α11ß1 is a receptor for collagen XIII, we utilized C2C12 cells transfected to express α11ß1 as their only collagen receptor. The interaction between collagen XIII and integrin α11ß1 was also confirmed by surface plasmon resonance and pull-down assays. We discovered that integrin α11ß1 mediates cell adhesion to two collagenous motifs, namely GPKGER and GF(S)QGEK, that were shown to act as the recognition sites for the integrin α11-I domain. Furthermore, we studied the in vivo significance of the α11ß1-collagen XIII interaction by crossbreeding α11 null mice (Itga11-/-) with mice overexpressing Col13a1 (Col13a1oe). When we evaluated the bone morphology by microcomputed tomography, Col13a1oe mice had a drastic bone overgrowth followed by severe osteoporosis, whereas the double mutant mouse line showed a much milder bone phenotype. To conclude, our data identifies integrin α11ß1 as a new collagen XIII receptor and demonstrates that this ligand-receptor pair has a role in the maintenance of bone homeostasis.


Assuntos
Osso e Ossos , Colágeno Tipo XIII/metabolismo , Cadeias alfa de Integrinas/metabolismo , Integrinas/metabolismo , Receptores de Colágeno/metabolismo , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Adesão Celular , Linhagem Celular , Humanos , Camundongos , Camundongos Knockout
5.
Proteins ; 84(11): 1728-1747, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27580869

RESUMO

A total of six different structural alignment tools (TM-Align, TriangleMatch, CLICK, ProBis, SiteEngine and GA-SI) were assessed for their ability to perform two particular tasks: (i) discriminating FAD (flavin adenine dinucleotide) from non-FAD binding sites, and (ii) performing an all-to-all comparison on a set of 883 FAD binding sites for the purpose of classifying them. For the first task, the consistency of each alignment method was evaluated, showing that every method is able to distinguish FAD and non-FAD binding sites with a high Matthews correlation coefficient. Additionally, GA-SI was found to provide alignments different from those of the other approaches. The results obtained for the second task revealed more significant differences among alignment methods, as reflected in the poor correlation of their results and highlighted clearly by the independent evaluation of the structural superimpositions generated by each method. The classification itself was performed using the combined results of all methods, using the best result found for each comparison of binding sites. A number of different clustering methods (Single-linkage, UPGMA, Complete-linkage, SPICKER and k-Means clustering) were also used. The groups of similar binding sites (proteins) or clusters generated by the best performing method were further analyzed in terms of local sequence identity, local structural similarity and conservation of analogous contacts with the FAD ligands. Each of the clusters was characterized by a unique set of structural features or patterns, demonstrating that the groups generated truly reflect the structural diversity of FAD binding sites. Proteins 2016; 84:1728-1747. © 2016 Wiley Periodicals, Inc.


Assuntos
Flavina-Adenina Dinucleotídeo/química , Proteínas/química , Software , Sequência de Aminoácidos , Sítios de Ligação , Análise por Conglomerados , Ligação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
6.
Comput Biol Chem ; 61: 23-38, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26773655

RESUMO

A methodology for performing sequence-free comparison of functional sites in protein structures is introduced. The method is based on a new notion of similarity among superimposed groups of amino acid residues that evaluates both geometry and physico-chemical properties. The method is specifically designed to handle disconnected and sparsely distributed sets of residues. A genetic algorithm is employed to find the superimposition of protein segments that maximizes their similarity. The method was evaluated by performing an all-to-all comparison on two separate sets of ligand-binding sites, comprising 47 protein-FAD (Flavin-Adenine Dinucleotide) and 64 protein-NAD (Nicotinamide-Adenine Dinucleotide) complexes, and comparing the results with those of an existing sequence-based structural alignment tool (TM-Align). The quality of the two methodologies is judged by the methods' capacity to, among other, correctly predict the similarities in the protein-ligand contact patterns of each pair of binding sites. The results show that using a sequence-free method significantly improves over the sequence-based one, resulting in 23 significant binding-site homologies being detected by the new method but ignored by the sequence-based one.


Assuntos
Proteínas/metabolismo , Ligantes
7.
PLoS One ; 9(9): e107914, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25238393

RESUMO

The upstream stimulatory factor 2 (USF2) is a regulator of important cellular processes and is supposed to have also a role during tumor development. However, the knowledge about the mechanisms that control the function of USF2 is limited. The data of the current study show that USF2 function is regulated by phosphorylation and identified GSK3ß as an USF2-phosphorylating kinase. The phosphorylation sites within USF2 could be mapped to serine 155 and threonine 230. In silico analyses of the 3-dimensional structure revealed that phosphorylation of USF2 by GSK3ß converts it to a more open conformation which may influence transactivity, DNA binding and target gene expression. Indeed, experiments with GSK-3ß-deficient cells revealed that USF2 transactivity, DNA binding and target gene expression were reduced upon lack of GSK3ß. Further, experiments with USF2 variants mimicking GSK3ß phosphorylated USF2 in GSK3ß-deficient cells showed that phosphorylation of USF2 by GSK3ß did not affect cell proliferation but increased cell migration. Together, this study reports a new mechanism by which USF2 may contribute to cancerogenesis.


Assuntos
Quinase 3 da Glicogênio Sintase/fisiologia , Fatores Estimuladores Upstream/fisiologia , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta , Meia-Vida , Células HeLa , Células Hep G2 , Humanos , Fosforilação , Ativação Transcricional , Fatores Estimuladores Upstream/química , Fatores Estimuladores Upstream/metabolismo
8.
Glycobiology ; 24(10): 945-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24907709

RESUMO

Tri-N-acetylchitotriosyl moranoline, (GlcNAc)3-M, was previously shown to strongly inhibit lysozyme (Ogata M, Umemoto N, Ohnuma T, Numata T, Suzuki A, Usui T, Fukamizo T. 2013. A novel transition-state analogue for lysozyme, 4-O-ß-tri-Nacetylchitotriosyl moranoline, provided evidence supporting the covalent glycosyl-enzyme intermediate. J Biol Chem. 288:6072-6082). The findings prompted us to examine the interaction of di-N-acetylchitobiosyl moranoline, (GlcNAc)2-M, with a family GH19 chitinase from moss, Bryum coronatum (BcChi19A). Thermal unfolding experiments using BcChi19A and the catalytic acid-deficient mutant (BcChi19A-E61A) revealed that the transition temperature (Tm) was elevated by 4.3 and 5.8°C, respectively, upon the addition of (GlcNAc)2-M, while the chitin dimer, (GlcNAc)2, elevated Tm only by 1.0 and 1.4°C, respectively. By means of isothermal titration calorimetry, binding free energy changes for the interactions of (GlcNAc)3 and (GlcNAc)2-M with BcChi19A-E61A were determined to be -5.2 and -6.6 kcal/mol, respectively, while (GlcNAc)2 was found to interact with BcChi19A-E61A with markedly lower affinity. nuclear magnetic resonance titration experiments using (15)N-labeled BcChi19A and BcChi19A-E61A revealed that both (GlcNAc)2 and (GlcNAc)2-M interact with the region surrounding the catalytic center of the enzyme and that the interaction of (GlcNAc)2-M is markedly stronger than that of (GlcNAc)2 for both enzymes. However, (GlcNAc)2-M was found to moderately inhibit the hydrolytic reaction of chitin oligosaccharides catalyzed by BcChi19A (IC50 = 130-620 µM). A molecular dynamics simulation of BcChi19A in complex with (GlcNAc)2-M revealed that the complex is quite stable and the binding mode does not significantly change during the simulation. The moranoline moiety of (GlcNAc)2-M did not fit into the catalytic cleft (subsite -1) but was rather in contact with subsite +1. This situation may result in the moderate inhibition toward the BcChi19A-catalyzed hydrolysis.


Assuntos
1-Desoxinojirimicina/metabolismo , Quitinases/metabolismo , Dissacarídeos/metabolismo , 1-Desoxinojirimicina/química , Calorimetria , Domínio Catalítico , Quitina/química , Quitina/metabolismo , Quitinases/química , Dissacarídeos/química , Hidrólise , Espectroscopia de Ressonância Magnética , Muramidase/antagonistas & inibidores , Muramidase/química , Ligação Proteica , Sphagnopsida/química
9.
Tuberculosis (Edinb) ; 94(4): 405-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24825023

RESUMO

Thiolases are enzymes involved in lipid metabolism. Thiolases remove the acetyl-CoA moiety from 3-ketoacyl-CoAs in the degradative reaction. They can also catalyze the reverse Claisen condensation reaction, which is the first step of biosynthetic processes such as the biosynthesis of sterols and ketone bodies. In human, six distinct thiolases have been identified. Each of these thiolases is different from the other with respect to sequence, oligomeric state, substrate specificity and subcellular localization. Four sequence fingerprints, identifying catalytic loops of thiolases, have been described. In this study genome searches of two mycobacterial species (Mycobacterium tuberculosis and Mycobacterium smegmatis), were carried out, using the six human thiolase sequences as queries. Eight and thirteen different thiolase sequences were identified in M. tuberculosis and M. smegmatis, respectively. In addition, thiolase-like proteins (one encoded in the Mtb and two in the Msm genome) were found. The purpose of this study is to classify these mostly uncharacterized thiolases and thiolase-like proteins. Several other sequences obtained by searches of genome databases of bacteria, mammals and the parasitic protist family of the Trypanosomatidae were included in the analysis. Thiolase-like proteins were also found in the trypanosomatid genomes, but not in those of mammals. In order to study the phylogenetic relationships at a high confidence level, additional thiolase sequences were included such that a total of 130 thiolases and thiolase-like protein sequences were used for the multiple sequence alignment. The resulting phylogenetic tree identifies 12 classes of sequences, each possessing a characteristic set of sequence fingerprints for the catalytic loops. From this analysis it is now possible to assign the mycobacterial thiolases to corresponding homologues in other kingdoms of life. The results of this bioinformatics analysis also show interesting differences between the distributions of M. tuberculosis and M. smegmatis thiolases over the 12 different classes.


Assuntos
Acetil-CoA C-Acetiltransferase/classificação , Proteínas de Bactérias/classificação , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/enzimologia , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Proteínas de Bactérias/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma Bacteriano , Humanos , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Filogenia , Alinhamento de Sequência/métodos
10.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 1): 165-76, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24419389

RESUMO

P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Šallows detailed structural analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer.


Assuntos
Proteína P2 de Mielina/química , Proteína P2 de Mielina/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica
11.
Biochim Biophys Acta ; 1838(3): 739-46, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24333300

RESUMO

Virtually every aspect of the human adaptive immune response is controlled by T cells. The T cell receptor (TCR) complex is responsible for the recognition of foreign peptide sequences, forming the initial step in the elimination of germ-infected cells. The recognition leads to an extracellular conformational change that is transmitted intracellularly through the Cluster of Differentiation 3 (CD3) subunits of the TCR-CD3 complex. Here we address the interplay between the disulfide-linked CD3ζζ dimer, an essential signaling component of the TCR-CD3 complex, and its lipidic environment. The disulfide bond formation requires the absolute presence of a nearby conserved aspartic acid, a fact that has mystified the scientific community. We use atomistic simulation methods to demonstrate that the conserved aspartic acid pair of the CD3ζζ dimer leads to a deformation of the membrane. This deformation changes the local environment of the cysteines and promotes disulfide bond formation. We also investigate the role of a conserved Tyr, highlighting its possible role in the interaction with other transmembrane components of the TCR-CD3 complex.


Assuntos
Complexo CD3/química , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Complexo CD3/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica
12.
J Biol Chem ; 288(42): 30042-30053, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23986450

RESUMO

Two carbohydrate binding modules (DD1 and DD2) belonging to CBM32 are located at the C terminus of a chitosanase from Paenibacillus sp. IK-5. We produced three proteins, DD1, DD2, and tandem DD1/DD2 (DD1+DD2), and characterized their binding ability. Transition temperature of thermal unfolding (Tm) of each protein was elevated by the addition of cello-, laminari-, chitin-, or chitosan-hexamer (GlcN)6. The Tm elevation (ΔTm) in DD1 was the highest (10.3 °C) upon the addition of (GlcN)6 and was markedly higher than that in DD2 (1.0 °C). A synergistic effect was observed (ΔTm = 13.6 °C), when (GlcN)6 was added to DD1+DD2. From isothermal titration calorimetry experiments, affinities to DD1 were not clearly dependent upon chain length of (GlcN)n; ΔGr° values were -7.8 (n = 6), -7.6 (n = 5), -7.6 (n = 4), -7.6 (n = 3), and -7.1 (n = 2) kcal/mol, and the value was not obtained for GlcN due to the lowest affinity. DD2 bound (GlcN)n with the lower affinities (ΔGr° = -5.0 (n = 3) ~ -5.2 (n = 6) kcal/mol). Isothermal titration calorimetry profiles obtained for DD1+DD2 exhibited a better fit when the two-site model was used for analysis and provided greater affinities to (GlcN)6 for individual DD1 and DD2 sites (ΔGr° = -8.6 and -6.4 kcal/mol, respectively). From NMR titration experiments, (GlcN)n (n = 2~6) were found to bind to loops extruded from the core ß-sandwich of individual DD1 and DD2, and the interaction sites were similar to each other. Taken together, DD1+DD2 is specific to chitosan, and individual modules synergistically interact with at least two GlcN units, facilitating chitosan hydrolysis.


Assuntos
Proteínas de Bactérias/química , Quitosana/química , Glicosídeo Hidrolases/química , Paenibacillus/enzimologia , Desdobramento de Proteína , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Quitosana/metabolismo , Estabilidade Enzimática , Glicosídeo Hidrolases/metabolismo , Temperatura Alta , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
13.
J Am Chem Soc ; 135(6): 2188-97, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23320396

RESUMO

The T cell receptor (TCR) together with accessory cluster of differentiation 3 (CD3) molecules (TCR-CD3 complex) is a key component in the primary function of T cells. The nature of association of the transmembrane domains is of central importance to the assembly of the complex and is largely unknown. Using multiscale molecular modeling and simulations, we have investigated the structure and assembly of the TCRα-CD3ε-CD3δ transmembrane domains both in membrane and in micelle environments. We demonstrate that in a membrane environment the transmembrane basic residue of the TCR closely interacts with both of the transmembrane acidic residues of the CD3 dimer. In contrast, in a micelle the basic residue interacts with only one of the acidic residues. Simulations of a recent micellar nuclear magnetic resonance structure of the natural killer (NK) cell-activating NKG2C-DAP12-DAP12 trimer in a membrane further indicate that the environment significantly affects the way these trimers associate. Since the currently accepted model for transmembrane association is entirely based on a micellar structure, we propose a revised model for the association of transmembrane domains of the activating immune receptors in a membrane environment.


Assuntos
Complexo CD3/química , Membrana Celular/química , Receptores de Antígenos de Linfócitos T/química , Complexo CD3/metabolismo , Membrana Celular/metabolismo , Micelas , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T/metabolismo
14.
Mol Cell Proteomics ; 11(11): 1510-22, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22865919

RESUMO

Post-translational modification of proteins by lysine acetylation plays important regulatory roles in living cells. The budding yeast Saccharomyces cerevisiae is a widely used unicellular eukaryotic model organism in biomedical research. S. cerevisiae contains several evolutionary conserved lysine acetyltransferases and deacetylases. However, only a few dozen acetylation sites in S. cerevisiae are known, presenting a major obstacle for further understanding the regulatory roles of acetylation in this organism. Here we use high resolution mass spectrometry to identify about 4000 lysine acetylation sites in S. cerevisiae. Acetylated proteins are implicated in the regulation of diverse cytoplasmic and nuclear processes including chromatin organization, mitochondrial metabolism, and protein synthesis. Bioinformatic analysis of yeast acetylation sites shows that acetylated lysines are significantly more conserved compared with nonacetylated lysines. A large fraction of the conserved acetylation sites are present on proteins involved in cellular metabolism, protein synthesis, and protein folding. Furthermore, quantification of the Rpd3-regulated acetylation sites identified several previously known, as well as new putative substrates of this deacetylase. Rpd3 deficiency increased acetylation of the SAGA (Spt-Ada-Gcn5-Acetyltransferase) complex subunit Sgf73 on K33. This acetylation site is located within a critical regulatory domain in Sgf73 that interacts with Ubp8 and is involved in the activation of the Ubp8-containing histone H2B deubiquitylase complex. Our data provides the first global survey of acetylation in budding yeast, and suggests a wide-ranging regulatory scope of this modification. The provided dataset may serve as an important resource for the functional analysis of lysine acetylation in eukaryotes.


Assuntos
Lisina/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Saccharomyces cerevisiae/metabolismo , Acetilação , Sequência Conservada , Evolução Molecular , Íons , Anotação de Sequência Molecular , Proteínas Nucleares/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
J Phys Chem B ; 116(11): 3619-29, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22360758

RESUMO

In the active site of the bacterial α-methylacyl-CoA racemase of Mycobacterium tuberculosis (MCR), the chirality of the 2-methyl branched C2-atom is interconverted between (S) and (R) isomers. Protein crystallographic data and quantum mechanics/molecular mechanics (QM/MM) computational approaches show that this interconversion is achieved via a planar enolate intermediate. The crystal structure, at 1.4 Å, visualizes the mode of binding of a reaction intermediate analogue, 2-methylacetoacetyl-CoA, in a well-defined planar enolate form. The computational studies confirm that in the conversion from (S) to (R), first a proton is abstracted by Nδ1 (His126), and subsequently the planar enolate form is reprotonated by Oδ2 (Asp156). The calculations also show that the negatively charged thioester oxygen of the enolate intermediate is stabilized by an oxyanion hole formed by N (Asp127), as well as by the side chain atoms of the catalytic residues, Asp156 and His126, both being protonated simultaneously, at the intermediate stage of the catalytic cycle. The computational analysis also reveals that the conversion of the (S)- to (R)- chirality is achieved by a movement of 1.7 Å of the chiral C2-carbon, with smaller shifts (approximately 1 Å) of the carbon atom of the 2-methyl group, the C3-atom of the fatty acid tail, and the C1-carbon and O1-oxygen atoms of the thioester moiety.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Racemases e Epimerases/química , Domínio Catalítico , Cristalografia por Raios X , Ligação de Hidrogênio , Mycobacterium tuberculosis/enzimologia , Racemases e Epimerases/metabolismo
16.
J Biotechnol ; 156(4): 268-74, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21871934

RESUMO

Overexpression of genes from thermophiles in Escherichia coli is an attractive approach towards the large-scale production of thermostable biocatalysts. However, various factors can challenge efficient heterologous protein expression--one example is the formation of stable 5' mRNA secondary structures that can impede an efficient translation initiation. In this work, we describe the expression optimization of purine nucleoside phosphorylase from the thermophilic microbe Deinococcus geothermalis in E. coli. Poor expression levels caused by stable secondary 5' mRNA structure formation were addressed by two different approaches: (i) increasing the cultivation temperature above the range used typically for recombinant protein expression and (ii) optimizing the 5' mRNA sequence for reduced secondary structures in the translation initiation region. The increase of the cultivation temperature from 30°C to 42°C allowed a more than 10-fold increase of activity per cell and optimizing the 5' mRNA gene sequence further increased the activity per cell 1.7-fold at 42°C. Thus, the combination of high-temperature cultivation and 5' sequence optimization is described as an effective approach to overcome poor expression levels resulting from stable secondary 5' mRNA structure formation. We suggest that this method is especially suitable for improving the expression of proteins derived from thermophiles in E. coli.


Assuntos
Deinococcus/enzimologia , Escherichia coli/genética , Purina-Núcleosídeo Fosforilase/metabolismo , RNA Mensageiro/química , Proteínas Recombinantes/metabolismo , Códon , Deinococcus/genética , Estabilidade Enzimática , Escherichia coli/metabolismo , Temperatura Alta , Conformação de Ácido Nucleico , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Solubilidade
17.
Planta ; 234(1): 123-37, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21390509

RESUMO

Expression of a class V chitinase gene (At4g19810, AtChiC) in Arabidopsis thaliana was examined by quantitative real-time PCR and by analyzing microarray data available at Genevestigator. The gene expression was induced by the plant stress-related hormones abscisic acid (ABA) and jasmonic acid (JA) and by the stress resulting from the elicitor flagellin, NaCl, and osmosis. The recombinant AtChiC protein was produced in E. coli, purified, and characterized with respect to the structure and function. The recombinant AtChiC hydrolyzed N-acetylglucosamine oligomers producing dimers from the non-reducing end of the substrates. The crystal structure of AtChiC was determined by the molecular replacement method at 2.0 Å resolution. AtChiC was found to adopt an (ß/α)(8) fold with a small insertion domain composed of an α-helix and a five-stranded ß-sheet. From docking simulation of AtChiC with pentameric substrate, the amino acid residues responsible for substrate binding were found to be well conserved when compared with those of the class V chitinase from Nicotiana tabacum (NtChiV). All of the structural and functional properties of AtChiC are quite similar to those obtained for NtChiV, and seem to be common to class V chitinases from higher plants.


Assuntos
Arabidopsis/enzimologia , Quitinases/química , Ácido Abscísico/efeitos adversos , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Quitinases/genética , Quitinases/metabolismo , Cristalografia por Raios X , Ciclopentanos/efeitos adversos , Flagelina/efeitos adversos , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Dados de Sequência Molecular , Osmose/fisiologia , Oxilipinas/efeitos adversos , Reguladores de Crescimento de Plantas/metabolismo , Cloreto de Sódio/efeitos adversos
18.
Matrix Biol ; 30(1): 27-33, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20955792

RESUMO

Lysyl hydroxylases (LH), which catalyze the post-translational modifications of lysines in collagen and collagen-like proteins, function as dimers. However, the amino acids responsible for dimerization and the role of dimer formation in the enzymatic activities of LH have not yet been identified. We have localized the region responsible for the dimerization of lysyl hydroxylase 3 (LH3), a multifunctional enzyme of collagen biosynthesis, to a sequence of amino acids between the glycosyltransferase activity and the lysyl hydroxylase activity domains. This area is covered by amino acids 541-547 in human LH3, but contains no cysteine residues. The region is highly conserved among LH isoforms, and is also involved in the dimerization of LH1 subunits. Dimerization is required for the LH activity of LH3, whereas it is not obligatory for the glycosyltransferase activities. In order to determine whether complex formation can occur between LH molecules originating from different species, and between different LH isoforms, double expressions were generated in a baculovirus system. Heterocomplex formation between mouse and human LH3, between human LH1 and LH3 and between human LH2 and LH3 was detected by western blot analyses. However, due to the low amount of complexes formed, the in vivo function of heterocomplexes remains unclear.


Assuntos
Motivos de Aminoácidos , Dimerização , Proteínas Mutantes/metabolismo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Sequência de Aminoácidos , Animais , Ensaios Enzimáticos , Humanos , Isoenzimas/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
19.
Chem Commun (Camb) ; (42): 6385-7, 2009 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19841785

RESUMO

Calculation of the free energy profile for hydrolysis of phosphohistidine using ONIOM methodology indicates a much tighter transition state in the enzyme active site compared to that in explicit water and elucidates the role of active site residues in catalysis.


Assuntos
Histidina/análogos & derivados , Proteínas Tirosina Fosfatases/metabolismo , Água/química , Fosfatase Ácida , Biocatálise , Domínio Catalítico , Histidina/química , Histidina/metabolismo , Hidrólise
20.
Biochim Biophys Acta ; 1794(8): 1159-67, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19332152

RESUMO

To examine the role of the loop structure consisting of residues 70-82 (70-82 loop) localized to +3/4 subsite of the substrate binding cleft of a family GH-19 endochitinase from barley seeds, Trp72 and Trp82 were mutated, and the mutated enzymes (W72A, W82A, and W72A/W82A) were characterized. Thermal stability and specific activities toward glycol chitin and chitin hexasaccharide were significantly affected by the individual mutations. When N-acetylglucosamine hexamer was hydrolyzed by the wild type, the beta-anomer of the substrate was preferentially hydrolyzed, producing the trimer predominantly and the dimer and tetramer in lesser amounts. When the mutated enzymes were used instead of the wild type, the enzyme cleavage sites in the hexamer substrate were clearly shifted, and the beta-anomer selectivity was eliminated. The mutation effects on the enzymatic activity and stability were much more substantial in W82A than in W72A, but surprisingly the effects of the W82A/W72A double mutation were intermediate between those of the two single mutations. A molecular dynamics simulation of the wild type and the Trp-mutated enzymes indicated that the 70-82 loop becomes more flexible upon mutation and the flexibility increases in the order of W72A, W72A/W82A and W82A. We conclude that Trp72 interacts with the sugar residue but Trp82 modulates the loop flexibility, which controls the protein stability and enzymatic properties. These tryptophan residues are likely to interact with each other, resulting in the non-additivity of mutational effects.


Assuntos
Quitinases/metabolismo , Hordeum/enzimologia , Sequência de Aminoácidos , Quitinases/química , Quitinases/genética , Simulação por Computador , Estabilidade Enzimática , Modelos Moleculares , Oligossacarídeos/metabolismo , Sementes/enzimologia , Especificidade por Substrato , Triptofano/química , Triptofano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA